cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A376048 Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} b(k)/a(k) < 1, where {b(k)} = 3,1,4,1,5,... are the digits of Pi (cf. A000796).

Original entry on oeis.org

4, 5, 81, 1621, 13130101, 310319170452181, 21399552788917656689963823241, 1373822578697020375503379392874191898311737749943783762521
Offset: 1

Views

Author

N. J. A. Sloane, Sep 13 2024

Keywords

References

  • Rémy Sigrist and N. J. A. Sloane, Dampening Down a Divergent Series, Manuscript in preparation, September 2024.

Crossrefs

Programs

  • Maple
    For Maple code for all these sequences, see A376056.

Formula

a(n+1) = b(n+1)*A376049(n) + 1.

A376051 a(n) is the denominator of the sum S(n) defined in A376050.

Original entry on oeis.org

2, 6, 15, 105, 1890, 1787940, 1598366509740, 170318366632160334167580, 4144049430320998104357181695998976956266032780, 903849772681252048573050443706467978048458261112444760582668531605732820714345840478376380
Offset: 1

Views

Author

N. J. A. Sloane, Sep 13 2024

Keywords

Examples

			The first few values of S(n) are 1/2, 5/6, 14/15, 103/105, 1889/1890, 1787939/1787940, 1598366509739/1598366509740, ... Note S(4) is exceptional, in that the numerator and denominator differ by 2 instead of 1.
		

Crossrefs

A376050 Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} 1/((2*k-1)*a(k)) < 1.

Original entry on oeis.org

2, 1, 2, 3, 6, 172, 137534, 106557767317, 10018727448950607892211, 218107864753736742334588510315735629277159621, 43040465365773907074907163986022284668974202910116417170603263409796800986397420975160781
Offset: 1

Views

Author

N. J. A. Sloane, Sep 13 2024

Keywords

Comments

It appears that S(n) = (e(n)-1)/e(n) for all n != 4, where e(n) = A376051(n). Exceptionally, S(4) = (e(4)-2)/e(4).
a(15) has 1420 decimal digits, too large for a b-file. - Robert Israel, Oct 13 2024

References

  • Rémy Sigrist and N. J. A. Sloane, Dampening Down a Divergent Series, Manuscript in preparation, September 2024.

Crossrefs

Programs

  • Maple
    S:= 1:R:= NULL:
    for i from 1 to 11 do
      r:= ceil(1/((2*i-1)*S));
      if r *(2*i-1) = 1/S then r:= r+1 fi;
      R:= R,r;
      S:= S - 1/((2*i-1)*r)
    od:
    R; # Robert Israel, Oct 13 2024
Showing 1-3 of 3 results.