A376050 Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} 1/((2*k-1)*a(k)) < 1.
2, 1, 2, 3, 6, 172, 137534, 106557767317, 10018727448950607892211, 218107864753736742334588510315735629277159621, 43040465365773907074907163986022284668974202910116417170603263409796800986397420975160781
Offset: 1
References
- Rémy Sigrist and N. J. A. Sloane, Dampening Down a Divergent Series, Manuscript in preparation, September 2024.
Links
- Robert Israel, Table of n, a(n) for n = 1..14
Programs
-
Maple
S:= 1:R:= NULL: for i from 1 to 11 do r:= ceil(1/((2*i-1)*S)); if r *(2*i-1) = 1/S then r:= r+1 fi; R:= R,r; S:= S - 1/((2*i-1)*r) od: R; # Robert Israel, Oct 13 2024
Comments