cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376056 Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} (2*k-1)/a(k) < 1.

This page as a plain text file.
%I A376056 #19 Mar 30 2025 06:31:52
%S A376056 2,7,71,6959,62255215,4736981006316791,
%T A376056 26518805245879857416837904442871,
%U A376056 811438882694890436523185183518581584358651922339197834228784351
%N A376056 Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} (2*k-1)/a(k) < 1.
%C A376056 Theorem: Given any sequence of nonnegative integers b(1), b(2), b(3), ..., let a(1), a(2), a(3), ... be the lexicographically earliest sequence of positive integers such that for all n >= 1, S(n) = Sum_{k = 1..n} b(k)/a(k) < 1. Then S(n) = (e(n)-1)/e(n) for positive integers e(1), e(2), e(3), ....
%C A376056 For the present sequence the e(k) are given in A376057.
%F A376056 a(n+1) = (2*n+1)*A376057(n) + 1.
%p A376056 # Given a sequence b(1), b(2), b(3), ... of nonnegative real numbers, this program computes the first M terms of the lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... with the property that for any n > 0, S(n) = Sum_{k = 1..n} b(k)/a(k) < 1.
%p A376056 # For the present sequence we set b(k) = 2*k - 1.
%p A376056 b := Array(0..100,-1); a := Array(0..100,-1); S := Array(0..100,-1); d := Array(0..100,-1);
%p A376056 for k from 1 to 100 do b[k]:=2*k-1; od:
%p A376056 M:=8;
%p A376056 S[0] := 0; d[0] := 1;
%p A376056 for n from 1 to M do
%p A376056 a[n] := floor(b[n]/d[n-1])+1;
%p A376056 S[n] := S[n-1] + b[n]/a[n];
%p A376056 d[n] := 1 - S[n];
%p A376056 od:
%p A376056 La:=[seq(a[n],n=1..M)]; # the present sequence
%p A376056 Ls:=[seq(S[n],n=1..M)]; # the sums S(n)
%p A376056 Lsn:=[seq(numer(S[n]),n=1..M)];
%p A376056 Lsd:=[seq(denom(S[n]),n=1..M)]; # A376057
%p A376056 Lsd-Lsn; # As a check, by the above theorem, this should (and does) produce the all-1's sequence
%p A376056 # Some small changes to the program are needed if the starting sequence {b(n)} has offset 0, as for example in the case of the Fibonacci or Catalan numbers (see A376058-A376061).
%Y A376056 Cf. A374663, A375516, A375531, A375532, A375781, A375522, A376048-A376055, A376057-A376061.
%K A376056 nonn,base
%O A376056 1,1
%A A376056 _N. J. A. Sloane_, Sep 14 2024