A376065 Orders k of groups G such that Inn(G) is isomorphic to Z(Aut(G)) for at least one G of order k.
1, 2, 4, 8, 16, 24, 32, 48, 64, 72, 96, 128, 144, 192, 216, 243, 256, 288, 320, 384, 432, 486, 512, 576, 640, 648, 729, 768, 864
Offset: 1
Examples
24 is a term since for G = C3 x D8, Inn(G) = Z(Aut(G)) = C2 x C2, and G has order 24.
Links
- Miles Englezou, Proofs of subsequences
Programs
-
GAP
S:=[]; for n in [1..500] do for i in [1..NrSmallGroups(n)] do G:=SmallGroup(n,i); Aut:=AutomorphismGroup(G); Inn:=InnerAutomorphismsAutomorphismGroup(Aut); if IsomorphismGroups(Centre(Aut),Inn)<>fail then S:=Concatenation(S,[n]); break; fi; od; od; Print(S);
Comments