This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376069 #29 Sep 26 2024 09:44:28 %S A376069 1,121,123121321,123412314231243121342132413214321, %T A376069 123451234152341253412354123145213425134215342135421345214352145321452314253142351423154231245312435124315243125432154325143254132451324153241352413254312 %N A376069 a(n) is the lexicographically earliest minimal superpermutation on n symbols, where the symbols are {1, 2, ..., n}, with 1 <= n <= 9. %C A376069 Please refer to A332089 (the main entry, where symbols in each superpermutation are individually listed) for more information. %C A376069 In this sequence superpermutations are encoded by concatenating the symbols in a single word. Such encoding ensures unambiguous representation only up to n = 9. %H A376069 Michael Engen and Vincent Vatter, <a href="https://doi.org/10.1080/00029890.2021.1835384">Containing All Permutations</a>, The American Mathematical Monthly, 128 (1), 2021, pp. 4-24 (<a href="https://doi.org/10.48550/arXiv.1810.08252">preprint version</a>). %H A376069 James Grime and Brady Haran, <a href="https://www.youtube.com/watch?v=wJGE4aEWc28">Superpermutations</a>, Numberphile video, 2018. %H A376069 Nathaniel Johnston, <a href="https://doi.org/10.1016/j.disc.2013.03.024">Non-uniqueness of minimal superpermutations</a>, Discrete Mathematics, Vol. 313, Issue 14, 2013, pp. 1553-1557 (<a href="https://doi.org/10.48550/arXiv.1303.4150">preprint version</a>). %H A376069 Nathaniel Johnston, <a href="https://njohnston.ca/2014/08/all-minimal-superpermutations-on-five-symbols-have-been-found/">All Minimal Superpermutations on Five Symbols Have Been Found</a>, 2014. %H A376069 Wikipedia, <a href="https://en.wikipedia.org/wiki/Superpermutation">Superpermutation</a>. %Y A376069 Cf. A180632, A332089, A332090, A341300, A376269. %K A376069 nonn,hard,fini %O A376069 1,2 %A A376069 _Paolo Xausa_, Sep 20 2024