This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376070 #6 Sep 30 2024 13:06:03 %S A376070 3,2,4,1,3,4,3,2,3,4,4,4,3,4,2,2,6,4,5,4,4,3,5,4,4,2,4,4,6,4,5,2,4,5, %T A376070 4,4,3,4,2,4,4,4,3,3,2,4,5,4,4,4,4,2,3,4,2,4,3,5,6,4,5,4,4,2,4,2,3,5, %U A376070 2,4,4,4,3,2,2,4,4,4,5,4,4,3,4,4,3,2,2,3,5,4,4,4,5,4,4,4,5,4,4,4,4 %N A376070 a(n) is the number of distinct terms reached by iterating the function x->2+A075860(x), starting from x=n, with n>0. %C A376070 The sequence has another definition: a(n)= The number of distinct elements in the set A(n)={f^{k}(n);k>=0}, where f^{k} is the k-th iteration of the function f defined by f(n)=2+A075860(n), f^{0}(n)=n and n>0. %C A376070 For all n>0, the set A(n) contains either the fixed point 4 or a cyclic component {5,7,9}. %C A376070 For all n>1 and h in A(n)\{n}, h-2 is a prime number. %C A376070 a(n)=1 if and only if n=4. %C A376070 If (p,p+2) is a twin prime pair with p>7, then a(p+2)=a(p)-1. %e A376070 For n=3, 3->5->7->9->5->7->9-> ... and {5,7,9} is a cyclic component, then a(n)=number of distinct terms = 4. %e A376070 For n=66, 66->4->4->4-> ... and 4 is a fixed point, then a(n)= number of distinct terms = 2. %e A376070 For n=25, 25->7->9->5->7->9->5->7->9->... and {5,7,9} is a cyclic component, then a(n)=number of distinct terms = 4. %p A376070 f := proc(n) option remember: %p A376070 if isprime(n) then %p A376070 n %p A376070 else %p A376070 procname(convert(numtheory:-factorset(n), `+`)) %p A376070 end if %p A376070 end proc: %p A376070 f(1) := 0: %p A376070 g := proc(n) %p A376070 2 + f(n) %p A376070 end proc: %p A376070 A376070 := proc(n) %p A376070 local k, result: %p A376070 k := 1: %p A376070 result := n: %p A376070 while not (result = 4 or result = 5 or result = 7 or result = 9) do %p A376070 result := g(result): %p A376070 k := k + 1: %p A376070 end do: %p A376070 if result = 5 or result = 7 or result = 9 then %p A376070 return k + 2; %p A376070 else %p A376070 return k: %p A376070 end if %p A376070 end proc: %p A376070 map(A376070, [$1..200]); %o A376070 (Python) %o A376070 from sympy import primefactors %o A376070 def a(n, pn): %o A376070 if n == pn: %o A376070 return n %o A376070 else: %o A376070 return a(sum(primefactors(n)), n) %o A376070 def A376070(n): %o A376070 k = 1 %o A376070 result = n %o A376070 while result not in {4, 5, 7, 9}: %o A376070 result = 2 + a(result, None) %o A376070 k += 1 %o A376070 if result in {5, 7, 9}: %o A376070 return k + 2 %o A376070 else: %o A376070 return k %o A376070 print([A376070(i) for i in range(1, 200)]) %Y A376070 Cf. A075860. %K A376070 nonn %O A376070 1,1 %A A376070 _Rafik Khalfi_, Sep 08 2024