cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376080 a(n) is the highest degree of the rational function in the recursive substitution {y1, y2} -> {y2, (y2 + 1)/(y1*y2)} after n steps.

This page as a plain text file.
%I A376080 #34 Sep 23 2024 11:32:15
%S A376080 1,1,1,2,4,5,7,10,13,16,20,25,29,34,40,46,52,59,67,74,82,91,100,109,
%T A376080 119,130,140,151,163,175,187,200,214,227,241,256,271,286,302,319,335,
%U A376080 352,370,388,406,425,445,464,484,505,526,547,569,592,614,637,661,685,709,734,760,785,811,838,865
%N A376080 a(n) is the highest degree of the rational function in the recursive substitution {y1, y2} -> {y2, (y2 + 1)/(y1*y2)} after n steps.
%C A376080 An example where the degree of the n-th iterate of a rational map exhibits polynomial growth. Also an example for exponential growth was given in the thesis from Khaled Hamad by A011782.
%H A376080 Paolo Xausa, <a href="/A376080/b376080.txt">Table of n, a(n) for n = 0..10000</a>
%H A376080 Khaled Hamad, <a href="https://web.archive.org/web/20230121195132id_/https://ltu-figshare-repo.s3.aarnet.edu.au/ltu-figshare-repo/38787108/42508_SOURCE01_2_A.pdf?AWSAccessKeyId=RADjuIEnIStOwNiA&amp;Expires=1674330702&amp;Signature=dI44kcVYhLdlAlTuO%2Ffq5ANYhpk%3D">Laurentification</a>, Thesis (2017). La Trobe University.
%H A376080 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,0,0,0,0,1,-2,1).
%F A376080 G.f.: (1 - x + x^3 + x^4 - x^5 + x^6 + x^8)/(1 - 2*x + x^2 - x^7 + 2*x^8 - x^9).
%F A376080 a(n) = ceiling((3*n^2 - 3*n + 8)/14).
%F A376080 a(n) = 2*a(n-1) - a(n-2) + a(n-7) - 2*a(n-8) + a(n-9).
%F A376080 a(n) = a(n-7) + 3*(n-7) + 9.
%F A376080 (2*a(n+6) - a(n+5) - 2*a(n-1) + a(n-2) - 9)/3  = n.
%t A376080 A376080[n_] := Ceiling[(3*n*(n - 1) + 8)/14];
%t A376080 Array[A376080, 100, 0] (* _Paolo Xausa_, Sep 23 2024 *)
%o A376080 (PARI)
%o A376080 r(v) = [v[2], (v[2]+1)/(v[1]*v[2])];
%o A376080 a(n) = {my(v = [x,x]); if(n < 2, 1,for(k=0, n-2, v = r(v)); poldegree(numerator(v[2])))};
%Y A376080 Cf. A011858, A058937.
%Y A376080 Cf. A011782 (highest degree of the rational function in the substitution: {y1, y2} -> {y2, y2 + y1/y2}).
%K A376080 nonn,easy
%O A376080 0,4
%A A376080 _Thomas Scheuerle_, Sep 09 2024