This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376092 #25 Jul 21 2025 12:38:43 %S A376092 1,49,3136,253472,23002083,2200079025,215523459072,21348015504200, %T A376092 2125390162618116,212104218976916644,21190268970925690248, %U A376092 2118092209873957381248,211765852717674823741924,21174572668805230623003225,2117363857447354911021280900 %N A376092 10^n-th powerful number. %H A376092 Chai Wah Wu, <a href="/A376092/b376092.txt">Table of n, a(n) for n = 0..16</a> %F A376092 a(n) = A001694(10^n). %F A376092 Limit_{n->oo} a(n)/10^(2n) = (zeta(3)/zeta(3/2))^2 = 0.21172829478335... %o A376092 (Python) %o A376092 from math import isqrt %o A376092 from sympy import mobius, integer_nthroot %o A376092 def A376092(n): %o A376092 def squarefreepi(n): %o A376092 return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) %o A376092 def bisection(f, kmin=0, kmax=1): %o A376092 while f(kmax) > kmax: kmax <<= 1 %o A376092 while kmax-kmin > 1: %o A376092 kmid = kmax+kmin>>1 %o A376092 if f(kmid) <= kmid: %o A376092 kmax = kmid %o A376092 else: %o A376092 kmin = kmid %o A376092 return kmax %o A376092 m = 10**n %o A376092 def f(x): %o A376092 c, l = m+x, 0 %o A376092 j = isqrt(x) %o A376092 while j>1: %o A376092 k2 = integer_nthroot(x//j**2,3)[0]+1 %o A376092 w = squarefreepi(k2-1) %o A376092 c -= j*(w-l) %o A376092 l, j = w, isqrt(x//k2**3) %o A376092 c -= squarefreepi(integer_nthroot(x,3)[0])-l %o A376092 return c %o A376092 return bisection(f,m,m) %Y A376092 Cf. A001694, A118896. %K A376092 nonn %O A376092 0,2 %A A376092 _Chai Wah Wu_, Sep 09 2024