cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376095 a(0) = 1; a(n) = Sum_{k=0..n-1} (k+1)^2 * a(k) * a(n-k-1).

This page as a plain text file.
%I A376095 #6 Sep 10 2024 04:06:49
%S A376095 1,1,5,54,983,26863,1029188,52747686,3491367091,290276997159,
%T A376095 29639219057133,3648073361410412,532858993269296500,
%U A376095 91147584892512564076,18051321652239427195456,4098339933686479506696526,1057506667415381878759070811,307764793378228160791205354175
%N A376095 a(0) = 1; a(n) = Sum_{k=0..n-1} (k+1)^2 * a(k) * a(n-k-1).
%F A376095 G.f. A(x) satisfies: A(x) = 1 + x * A(x)^2 + 3 * x^2 * A(x) * A'(x) + x^3 * A(x) * A''(x).
%t A376095 a[0] = 1; a[n_] := a[n] = Sum[(k + 1)^2 a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 17}]
%t A376095 nmax = 17; A[_] = 0; Do[A[x_] = 1 + x A[x]^2 + 3 x^2 A[x] A'[x] + x^3 A[x] A''[x] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
%Y A376095 Cf. A000699, A015083, A051893, A088716, A376096, A376097.
%K A376095 nonn
%O A376095 0,3
%A A376095 _Ilya Gutkovskiy_, Sep 10 2024