cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376109 a(n) is the length of the longest arithmetic progression ending at n consisting of numbers with the same number of prime factors as n, counted with multiplicity.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 2, 3, 2, 1, 3, 2, 3, 2, 3, 3, 4, 2, 2, 3, 2, 3, 5, 2, 3, 1, 3, 3, 3, 2, 2, 3, 2, 2, 4, 3, 4, 3, 2, 4, 3, 2, 3, 2, 3, 3, 5, 2, 4, 3, 3, 5, 4, 2, 3, 3, 3, 1, 3, 3, 3, 3, 4, 3, 3, 2, 3, 3, 2, 3, 3, 3, 4, 2, 2, 4, 4, 3, 3, 4, 5, 3, 3, 2, 4, 4, 4, 3, 3, 2, 4, 3, 3
Offset: 1

Views

Author

Robert Israel, Sep 10 2024

Keywords

Comments

a(n) is the greatest k such that there exists d >= 1 with A001222(n-i*d) = A001222(n) for 0 <= i < k.
If m divides n, then a(n) >= a(m).
a(n) = 1 if and only if n is a power of 2.

Examples

			a(7) = 3 because 7 is prime and there is an arithmetic progression of 3 primes, namely 3, 5, 7, ending with 7 but no such arithmetic progression of 4 primes.
		

Crossrefs

Programs

  • Maple
    M:= Array(1..10):
    for n from 2 to 100 do
      v:= numtheory:-bigomega(n);
      if M[v] = 0 then M[v]:= n else M[v]:= M[v],n fi;
    od:
    for i from 1 to 10 do M[i]:= [M[i]] od:
    f:= proc(s) local n,i,m,d,v,j;
       m:= 1;
       v:= numtheory:-bigomega(s);
       member(s,M[v],n);
       for i from n-1 to 1 by -1 do
         d:= s - M[v][i];
         if s - m*d < M[v][1] then return m fi;
         for j from 2 while ListTools:-BinarySearch(M[v],s-j*d) <> 0 do od:
         m:= max(m,j);
       od;
      m;
    end proc:
    f(1):= 1:
    map(f, [$1..100]);