This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376115 #6 Sep 11 2024 00:42:51 %S A376115 1,1,1,1,2,2,2,1,3,1,4,4,2,4,1,1,6,6,6,2,6,8,6,8,3,11,7,8,6,2,12,1,12, %T A376115 12,1,12,6,12,1,4,12,12,12,16,1,12,18,16,14,5,13,22,12,14,17,16,11,12, %U A376115 6,4,24,24,18,1,7,24,24,24,18,2,12,24,6,35,5,13,19,33,6,8,21,24,12,24,8,24 %N A376115 Least common differences in the arithmetic progressions corresponding to A376109. %C A376115 a(n) is the least d >= 1 such that A001222(n-i*d) = A001222(n) for 0 <= i < A376109(n). %H A376115 Robert Israel, <a href="/A376115/b376115.txt">Table of n, a(n) for n = 1..10000</a> %e A376115 a(7) = 2 because the arithmetic progression 3, 5, 7 of A376109(7) = 3 primes ending in 7 has common difference of 5 - 3 = 7 - 5 = 2. %e A376115 There are two arithmetic progressions of semiprimes of A376109(14) = 3 ending in 14, namely 6, 10, 14 with common difference 4 and 4, 9, 14 with common difference 5, so a(14) = 4. %p A376115 M:= Array(1..10): %p A376115 for n from 2 to 100 do %p A376115 v:= numtheory:-bigomega(n); %p A376115 if M[v] = 0 then M[v]:= n else M[v]:= M[v], n fi; %p A376115 od: %p A376115 for i from 1 to 10 do M[i]:= [M[i]] od: %p A376115 f:= proc(s) local n,i,m,d,v,j,dm; %p A376115 m:= 1; dm:= 1; %p A376115 v:= numtheory:-bigomega(s); %p A376115 member(s,M[v],n); %p A376115 for i from n-1 to 1 by -1 do %p A376115 d:= s - M[v][i]; %p A376115 if s - m*d < M[v][1] then return dm fi; %p A376115 for j from 2 while ListTools:-BinarySearch(M[v],s-j*d) <> 0 do od: %p A376115 if j > m then m:= j; dm:= d fi; %p A376115 od; %p A376115 dm; %p A376115 end proc: %p A376115 f(1):= 1: %p A376115 map(f, [$1..100]); %Y A376115 Cf. A001222, A375386, A375511, A376109. %K A376115 nonn %O A376115 1,5 %A A376115 _Robert Israel_, Sep 10 2024