This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376117 #10 Oct 16 2024 22:28:52 %S A376117 1,1,-2,-1,-6,0,10,16,4,-11,-17,-12,-5,-1,-24,84,-60,30,-144,-48,104, %T A376117 186,268,-12,-240,-436,-348,-46,262,444,391,199,-23,-166,-207,-172, %U A376117 -109,-55,-21,-6,-1,120,-1200,4560,-7740,5064,-2472,9768,-19152,35004,-39408 %N A376117 Irregular triangle of numerator polynomial coefficients of C({1..n},x), T(n,k) for n >= 0 and k >= A000217(n). %H A376117 John Tyler Rascoe, <a href="/A376117/b376117.txt">Rows n = 0..7, flattened</a> %F A376117 C({s},x) = Sum_{i in {s}} (C({s}-{i},x)*x^i)/(1 - Sum_{i in {s}} (x^i)) with C({},x) = 1. %e A376117 For row n = 2, C({1,2},x) = (-2*x^3 - x^4)/(1 + x + 2*x^2 - x^3 - x^4). %e A376117 Triangle begins %e A376117 k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 %e A376117 n=0 1; %e A376117 n=1 . 1; %e A376117 n=2 . . . -2, -1; %e A376117 n=3 . . . . . . -6, 0, 10, 16, 4, -11, -17, -12, -5, -1; %o A376117 (PARI) %o A376117 C_x(s)={my( g=if(#s <1, 1, sum(i=1, #s, C_x(s[^i]) * x^(s[i]) )/(1-sum(i=1, #s, x^(s[i]))))); return(g)} %o A376117 A376117_row(n)={my(t=n*(n+1)/2, c=C_x([1..n]), d=poldegree(numerator(c))-t, z=vector(d+1)); for(k=0,d,z[k+1]=polcoeff(numerator(c),k+t)); z} %Y A376117 Cf. A107429, A175669, A196847, A231147, A373196. %K A376117 sign,tabf %O A376117 0,3 %A A376117 _John Tyler Rascoe_, Sep 10 2024