This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376119 #15 Dec 12 2024 18:24:40 %S A376119 36,100,144,196,216,324,400,576,784,900,1000,1296,1600,1728,1764,1936, %T A376119 2304,2500,2704,2744,2916,3136,3600,4356,4624,4900,5184,5776,5832, %U A376119 6084,6400,7056,7744,7776,8000,8100,8464,9216,9604,10000,10404,10648,10816,11025,11664,12100,12544 %N A376119 Abundant numbers that are perfect powers. %C A376119 Intersection of A001597 and A005101. %H A376119 Robert Israel, <a href="/A376119/b376119.txt">Table of n, a(n) for n = 1..10000</a> %e A376119 36 is a term being a power (36=6^2) and an abundant number as a multiple of 6. %p A376119 N:= 20000: # to get terms <= N %p A376119 isab:= proc(n) local F, t; %p A376119 F:= ifactors(n)[2]; %p A376119 mul((t[1]^(t[2]+1)-1)/(t[1]-1), t = F) > 2*n %p A376119 end proc: %p A376119 S:= select(isab, {seq(seq(x^i,i=2..ilog[x](N)),x=2..isqrt(N))}): %p A376119 sort(convert(S,list)); # _Robert Israel_, Sep 12 2024 %t A376119 Select[Range[2*10^4], DivisorSigma[1,#]-2#>0&&GCD@@FactorInteger[#][[All, 2]]>1&] %o A376119 (PARI) ok(n)=sigma(n)-2*n>0 && ispower(n) %Y A376119 Cf. A001597, A005101. %K A376119 nonn %O A376119 1,1 %A A376119 _Waldemar Puszkarz_, Sep 11 2024