This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376133 #11 Sep 13 2024 13:43:13 %S A376133 1,2,4,3,7,5,6,12,8,10,9,17,11,15,13,14,24,16,22,18,20,19,31,21,29,23, %T A376133 27,25,26,40,28,38,30,36,32,34,33,49,35,47,37,45,39,43,41,42,60,44,58, %U A376133 46,56,48,54,50,52,51,71,53,69,55,67,57,65,59,63,61,62,84,64,82,66,80,68,78,70,76,72,74 %N A376133 Triangle T read by rows: T(n, 1) = (2*n*n - 4*n + 7 + (-1)^n) / 4 and T(n, k) = T(n, k-1) + (-1)^k * 2 * (n+1-k) for k >= 2. %C A376133 Row n consists of the next n odd/even natural numbers if n is odd/even. So the sequence yields a permutation of the natural numbers. %F A376133 T(n, k) = (2*n*n + (-1)^k * 4 * (n - k) + 5 + 2 * (-1)^k + (-1)^n) / 4. %F A376133 T(n, 1) = (2*n*n - 4*n + 7 + (-1)^n) / 4 = A061925(n-1). %F A376133 T(n, 2) = (2*n*n + 4*n - 1 + (-1)^n) / 4 = A074148(n) for n > 1. %F A376133 T(n, k) = T(n, k-2) - (-1)^k * 2 for 3 <= k <= n. %F A376133 G.f.: x*y*(1 + 2*x*y + 2*x^5*y^2 + x^6*y^3 - x^4*y*(3 + y + y^2) - x^2*(1 + y + 3*y^2) + 2*x^3*(1 + y^3))/((1 - x)^3*(1 + x)*(1 - x*y)^3*(1 + x*y)). - _Stefano Spezia_, Sep 12 2024 %e A376133 Row n=5: Next (1,3,5,7 see rows 1 and 3) five odd numbers are 9,11,13,15 and 17; with "9+8-6+4-2" we get 9,17,11,15,13 for row 5. %e A376133 Row n=8: Next (2,4,..,24 see rows 2, 4 and 6) eight even numbers are 26,28,..,40; with "26+14-12+10-8+6-4+2" we get 26,40,28,38,30,36,32,34 for row 8. %e A376133 Triangle T(n, k) for 1 <= k <= n starts: %e A376133 n\ k : 1 2 3 4 5 6 7 8 9 10 11 12 %e A376133 ====================================================== %e A376133 1 : 1 %e A376133 2 : 2 4 %e A376133 3 : 3 7 5 %e A376133 4 : 6 12 8 10 %e A376133 5 : 9 17 11 15 13 %e A376133 6 : 14 24 16 22 18 20 %e A376133 7 : 19 31 21 29 23 27 25 %e A376133 8 : 26 40 28 38 30 36 32 34 %e A376133 9 : 33 49 35 47 37 45 39 43 41 %e A376133 10 : 42 60 44 58 46 56 48 54 50 52 %e A376133 11 : 51 71 53 69 55 67 57 65 59 63 61 %e A376133 12 : 62 84 64 82 66 80 68 78 70 76 72 74 %e A376133 etc. %p A376133 T := (n, k) -> ((-1)^k*(2 + 4*(n - k)) + 2*n^2 + (-1)^n + 5)/4: %p A376133 seq(seq(T(n, k), k = 1..n), n = 1..12); # _Peter Luschny_, Sep 13 2024 %o A376133 (PARI) T(n,k)=(2*n*n+(-1)^k*4*(n-k)+5+2*(-1)^k+(-1)^n)/4 %Y A376133 Cf. A061925 (column 1), A074148 (column 2), A074149 (row sums), A236283 (main diagonal). %K A376133 nonn,easy,tabl %O A376133 1,2 %A A376133 _Werner Schulte_, Sep 11 2024