A376140 The number of divisors of n whose prime factorization has maximum exponent that is smaller than the maximum exponent in the prime factorization of n.
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 4, 1, 4, 1, 4, 1, 1, 1, 6, 2, 1, 3, 4, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 6, 1, 1, 1, 4, 4, 1, 1, 8, 2, 4, 1, 4, 1, 6, 1, 6, 1, 1, 1, 8, 1, 1, 4, 6, 1, 1, 1, 4, 1, 1, 1, 9, 1, 1, 4, 4, 1, 1, 1, 8, 4, 1, 1, 8, 1, 1, 1
Offset: 1
Links
Programs
-
Mathematica
a[n_] := Module[{e = FactorInteger[n][[;;,2]], m}, m = Max[e]; Times@@ ((Min[#, m-1] & /@ e) + 1)]; a[1] = 0; Array[a, 100]
-
PARI
a(n) = if(n == 1, 0, my(e = factor(n)[,2], m = vecmax(e)); vecprod(apply(x -> 1 + min(x, m-1), e)));
Formula
a(n) = Sum_{d|n} [m(d) = m(n)], where m(n) = A051903(n) and [] is the Iverson bracket.
If n = Product_{i} p_i^e_i (where p_i are distinct primes), then a(n) = Product_{i} (e_i + [e_i < Max_{i}(e_i)]).
a(n) <= 1 if and only if n is squarefree (A005117), and a(n) = 0 only for n = 1.
a(n) < A000005(n).
Comments