A376141 The maximum exponent in the prime factorization of the numbers k such that k and k+1 have the same maximum exponent in their prime factorization.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
emax[n_] := Max[FactorInteger[n][[;; , 2]]]; emax[1] = 0; With[{t = Table[emax[n], {n, 1, 500}]}, t[[Position[Differences[t], 0] // Flatten]]]
-
PARI
emax(n) = if(n == 1, 0, vecmax(factor(n)[, 2])); lista(kmax) = {my(e1 = 0, e2); for(k = 2, kmax, e2 = emax(k); if(e1 == e2, print1(e1, ", ")); e1 = e2);}
Formula
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (d(2) + Sum_{k>=2} k * (d(k) + d(k+1) - 2 * d2(k)))/d0 = 1.14396758638154735362..., where d(k) = Product_{p prime} (1 - 2/p^k), d2(k) = Product_{p prime} (1 - 1/p^k - 1/p^(k+1)), and d0 = 0.36939178586283962461... is the asymptotic density of A369020.