cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376141 The maximum exponent in the prime factorization of the numbers k such that k and k+1 have the same maximum exponent in their prime factorization.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 11 2024

Keywords

Crossrefs

Programs

  • Mathematica
    emax[n_] := Max[FactorInteger[n][[;; , 2]]]; emax[1] = 0; With[{t = Table[emax[n], {n, 1, 500}]}, t[[Position[Differences[t], 0] // Flatten]]]
  • PARI
    emax(n) = if(n == 1, 0, vecmax(factor(n)[, 2]));
    lista(kmax) = {my(e1 = 0, e2); for(k = 2, kmax, e2 = emax(k); if(e1 == e2, print1(e1, ", ")); e1 = e2);}

Formula

a(n) = A051903(A369020(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (d(2) + Sum_{k>=2} k * (d(k) + d(k+1) - 2 * d2(k)))/d0 = 1.14396758638154735362..., where d(k) = Product_{p prime} (1 - 2/p^k), d2(k) = Product_{p prime} (1 - 1/p^k - 1/p^(k+1)), and d0 = 0.36939178586283962461... is the asymptotic density of A369020.