cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376146 E.g.f. satisfies A(x) = exp( x * (1+x)^4 * A(x) ).

This page as a plain text file.
%I A376146 #11 Feb 16 2025 08:34:07
%S A376146 1,1,11,124,1997,42616,1120327,35203960,1288741337,53898829408,
%T A376146 2536932089771,132770439164584,7649993702503429,481295935534882768,
%U A376146 32834728249861856879,2414570451161244199576,190412665638185073399473,16030575396743899522805440
%N A376146 E.g.f. satisfies A(x) = exp( x * (1+x)^4 * A(x) ).
%H A376146 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A376146 E.g.f.: exp( -LambertW(-x * (1+x)^4) ).
%F A376146 a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(4*k,n-k)/k!.
%o A376146 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x*(1+x)^4))))
%Y A376146 Cf. A362771, A362772, A376145.
%Y A376146 Cf. A360082, A367790.
%K A376146 nonn
%O A376146 0,3
%A A376146 _Seiichi Manyama_, Sep 11 2024