cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376152 Decimal expansion of a constant related to the asymptotics of A376530.

This page as a plain text file.
%I A376152 #22 Oct 09 2024 14:26:56
%S A376152 4,9,8,8,0,2,0,8,7,6,6,0,0,9,0,3,8,0,5,3,3,5,2,2,4,4,6,0,7,9,0,7,7,3,
%T A376152 0,5,0,8,3,2,0,3,8,1,5,6,0,9,1,6,8,7,9,6,2,3,8,7,4,4,4,9,9,1,9,1,9,5,
%U A376152 5,2,9,6,5,3,4,2,1,0,1,1,8,3,9,2,4,3,7,9,6,0,7,2,5,7,7,9,8,0,7,3,9,0,8,5,1
%N A376152 Decimal expansion of a constant related to the asymptotics of A376530.
%F A376152 Equals limit_{n->infinity} A376530(n)^(1/sqrt(n)).
%F A376152 Equals exp(2*sqrt(log(r)^2 + 2*polylog(2, 1-r) - 2*polylog(2, 1-r^3)/3)), where r = A192918 = 0.54368901269207636157085597180174... is the real root of the equation r^2 * (1-r^3)^2 = (1-r)^2.
%e A376152 4.988020876600903805335224460790773050832038156091687962387444991919...
%t A376152 RealDigits[E^(2*Sqrt[Log[r]^2 + 2*PolyLog[2, 1-r] - 2*PolyLog[2, 1-r^3]/3]) /. r -> (-1 - 2/(17 + 3*Sqrt[33])^(1/3) + (17 + 3*Sqrt[33])^(1/3))/3, 10, 120][[1]]
%Y A376152 Cf. A376530, A376621.
%K A376152 nonn,cons
%O A376152 1,1
%A A376152 _Vaclav Kotesovec_, Oct 09 2024