This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376157 #27 Sep 30 2024 12:58:28 %S A376157 4,25,36,54,125,192,289,297,343,392,448,676,756,1089,1536,1764,1936, %T A376157 2646,2888,3872,4802,4860,6174,6250,6776,6860,7290,7488,7680,8750, %U A376157 8775,9408,9747,10648,14739,15309,16848,18432,18865,21296,22869,25725,29988,33750,33957 %N A376157 Numbers k such that the sum of the digits of k equals the sum of its prime factors plus the sum of the multiplicities of each prime factor. %F A376157 { k : A007953(k) = A008474(k) }. %e A376157 For k = 54, its prime factorization is 2^1*3^3: 5+4 = 2+1+3+3 = 9. %e A376157 For k = 756, its prime factorization is 2^2*3^3*7^1: 7+5+6 = 2+2+3+3+7+1 = 18. %t A376157 Select[Range[34000], DigitSum[#]==Total[Flatten[FactorInteger[#]]] &] (* _Stefano Spezia_, Sep 14 2024 *) %o A376157 (Python) %o A376157 from sympy.ntheory import factorint %o A376157 c = 2 %o A376157 while c < 10000: %o A376157 charsum = 0 %o A376157 for char in str(c): %o A376157 charsum += int(char) %o A376157 pf = factorint(c) %o A376157 cand = 0 %o A376157 for p in pf.keys(): %o A376157 cand += p %o A376157 cand += pf[p] %o A376157 if charsum == cand: %o A376157 print(c) %o A376157 print(pf) %o A376157 c += 1 %o A376157 (PARI) isok(k)={my(f=factor(k)); vecsum(f[,1]) + vecsum(f[,2]) == sumdigits(k)} \\ _Andrew Howroyd_, Sep 26 2024 %Y A376157 Similar to A006753, A019506, A050689, A063737, A070275, A285494. %Y A376157 Cf. A007953, A008474. %K A376157 nonn,base %O A376157 1,1 %A A376157 _Jordan Brooks_, Sep 12 2024