A376296 The number of solutions x<=y<=z<=w in Z/(n) of the equation x+y+z+w = x*y*z*w.
1, 2, 6, 7, 14, 18, 27, 34, 51, 59, 91, 96, 134, 136, 208, 203, 285, 261, 385, 373, 493, 487, 650, 616, 818, 750, 949, 947, 1240, 1146, 1517, 1397, 1766, 1662, 2089, 1824, 2443, 2309, 2723, 2638, 3311, 2977, 3801, 3482, 4024, 3962, 4900, 4382, 5525, 5023, 6078
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..1351
Programs
-
Maple
a:=proc(n) local x,y,z,w,N; N:=0: for x from 0 to n-1 do for y from x to n-1 do for z from y to n-1 do for w from z to n-1 do if (x+y+z+w-x*y*z*w) mod n = 0 then N:=N + 1; fi; od: od: od: od: N; end:
-
Python
def A376296(n): c = 0 for x in range(n): for y in range(x,n): xy,xyp = x*y%n,(x+y)%n for z in range(y,n): xyz, xyzp = xy*z%n-1,(xyp+z)%n c += sum(not (xyz*w-xyzp)%n for w in range(z,n)) return c # Chai Wah Wu, Sep 19 2024
Comments