cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376198 a(1) = 1, a(2) = 2. Thereafter, let smc and smp denote the smallest missing composite and smallest missing prime. If a(n) is composite, then if a(n) = 2*smp then a(n+1) = smp, otherwise a(n+1) = smc; if a(n) is a prime, then if smp < smc, a(n+1) = smp, otherwise a(n+1) = smc.

This page as a plain text file.
%I A376198 #22 Oct 05 2024 12:38:26
%S A376198 1,2,3,4,6,8,9,10,5,7,11,12,14,15,16,18,20,21,22,24,25,26,13,17,19,23,
%T A376198 27,28,30,32,33,34,35,36,38,39,40,42,44,45,46,48,49,50,51,52,54,55,56,
%U A376198 57,58,29,31,37,41,43,47,53,59,60,62,63,64,65,66,68,69,70,72,74,75,76,77,78,80,81,82,84,85,86,87,88,90,91,92,93,94
%N A376198 a(1) = 1, a(2) = 2. Thereafter, let smc and smp denote the smallest missing composite and smallest missing prime. If a(n) is composite, then if a(n) = 2*smp then a(n+1) = smp, otherwise a(n+1) = smc; if a(n) is a prime, then if smp < smc, a(n+1) = smp, otherwise a(n+1) = smc.
%C A376198 The composite terms appear in their natural order, as do the primes.
%C A376198 This is a simplified version of A375564 (the difference being in the way the composite numbers are handled: here they appear in order, whereas in A375564 successive composite numbers must have a common gcd greater than 1).
%C A376198 The following table was calculated by _Michael S. Branicky_ on Oct 04 2024.
%C A376198 It shows the beginning, end, and length of the k-th run of successive primes.
%C A376198   a  b c  : d e f [a = k, b = A376750(k), c = A376751(k),
%C A376198   1  2 2  : 3 3 2   d = A376752(k), e = A376753(k), f = A376754(k)]
%C A376198   2  9 5  : 11 11 3
%C A376198   3  23 13  : 26 23 4
%C A376198   4  52 29  : 59 59 8
%C A376198   5  110 61  : 122 113 13
%C A376198   6  231 127  : 254 251 24
%C A376198   7  472 257  : 514 509 43
%C A376198   8  965 521  : 1042 1039 78
%C A376198   9  1958 1049  : 2099 2099 142
%C A376198   10  3962 2111  : 4222 4219 261
%C A376198   11  7980 4229  : 8458 8447 479
%C A376198   12  16029 8461  : 16922 16921 894
%C A376198   13  32181 16927  : 33854 33851 1674
%C A376198   14  64597 33857  : 67714 67709 3118
%C A376198   15  129574 67723  : 135446 135433 5873
%C A376198   16  259798 135449  : 270899 270899 11102
%C A376198   17  520835 270913  : 541826 541817 20992
%C A376198   18  1043833 541831  : 1083662 1083659 39830
%C A376198   19  2091473 1083689  : 2167378 2167369 75906
%C A376198   20  4190135 2167393  : 4334786 4334777 144652
%C A376198   21  8392863 4334791  : 8669582 8669543 276720
%C A376198   22  16809322 8669593  : 17339186 17339177 529865
%C A376198   23  33661860 17339197  : 34678394 34678381 1016535
%C A376198   24  67402676 34678421  : 69356842 69356839 1954167
%C A376198   25  134952624 69356857  : 138713714 138713711 3761091
%C A376198   26  270177158 138713717  : 277427434 277427431 7250277
%C A376198   27  540861852 277427441  : 554854882 554854873 13993031
%C A376198   28  1082667610 554854889  : 1109709778 1109709709 27042169
%C A376198   29  2167106199 1109709791  : 2219419582 2219419577 52313384
%C A376198   30  4337519113 2219419597  : 4438839194 4438839173 101320082
%C A376198   31  8681255531 4438839259  : 8877678518 8877678499 196422988
%C A376198   32  17374202846 8877678527  : 17755357054 17755357051 381154209
%C A376198   33  34770433922 17755357069  : 35510714138 35510714137 740280217
%H A376198 Michael S. Branicky, <a href="/A376198/b376198.txt">Table of n, a(n) for n = 1..100000</a>
%o A376198 (Python)
%o A376198 from itertools import islice
%o A376198 from sympy import isprime, nextprime
%o A376198 def agen(): # generator of terms
%o A376198     an, smc, smp = 2, 4, 3
%o A376198     yield from [1, 2]
%o A376198     while True:
%o A376198         if not isprime(an):
%o A376198             an = smp if an == 2*smp else smc
%o A376198         else:
%o A376198             an = smp if smp < smc else smc
%o A376198         if an == smp: smp = nextprime(smp)
%o A376198         else:
%o A376198             smc += 1
%o A376198             while isprime(smc): smc += 1
%o A376198         yield an
%o A376198 print(list(islice(agen(), 87))) # _Michael S. Branicky_, Oct 03 2024
%Y A376198 Cf. A375564, A376199-A376201, A376750-A376754.
%Y A376198 See also A113646 (next composite number).
%K A376198 nonn
%O A376198 1,2
%A A376198 _N. J. A. Sloane_, Oct 03 2024