This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376202 #29 Nov 07 2024 08:46:23 %S A376202 0,0,2,0,0,0,6,0,0,0,0,0,12,0,0,0,0,0,18,0,12,0,0,0,0,0,0,0,0,0,30,0, %T A376202 0,0,0,0,36,0,24,0,0,0,42,0,0,0,0,0,42,0,0,0,0,0,0,0,36,0,0,0,60,0,0, %U A376202 0,0,0,66,0,0,0,0,0,72,0,0,0,0,0,78,0,0,0,0,0,0,0,0,0,0,0,144,0,60,0,0,0,96,0,0,0,0,0,102,0,0 %N A376202 Number of pairs 1 <= x <= y <= n-1 such that gcd(x,n) = gcd(y,n) = gcd(x+y,n) = 1 and 1/x + 1/y == 1/(x+y) mod n. %C A376202 In general, 1/x + 1/y = 1/(x+y) is the wrong way to add fractions! %C A376202 See A376203 for a(2*n-1)/2 and A376755 for a(6*n+1)/6. %C A376202 From _Robert Israel_, Nov 06 2024: (Start) %C A376202 If a(n) = 0 then a(m) = 0 whenever m is a multiple of n. %C A376202 It appears that the primes p for which a(p) > 0 are A007645. (End) %H A376202 Robert Israel, <a href="/A376202/b376202.txt">Table of n, a(n) for n = 1..6000</a> %e A376202 For n = 3 the a(3) = 2 solutions are (x,y) = (1,1) and (2,2). %e A376202 For n = 7 the a(7) = 6 solutions are (x,y) = (1,2), (1,4), (2,4), (3,5), (3,6), (5,6). %p A376202 a:=[]; %p A376202 for n from 1 to 140 do %p A376202 c:=0; %p A376202 for y from 1 to n-1 do %p A376202 for x from 1 to y do %p A376202 if gcd(y,n) = 1 and gcd(x,n) = 1 and gcd(x+y,n) = 1 and (1/x + 1/y - 1/(x+y)) mod n = 0 then c:=c+1; fi; %p A376202 od: # od x %p A376202 od: # od y %p A376202 a:=[op(a),c]; %p A376202 od: # od n %p A376202 a; %o A376202 (Python) %o A376202 from math import gcd %o A376202 def A376202(n): %o A376202 c = 0 %o A376202 for x in range(1,n): %o A376202 if gcd(x,n) == 1: %o A376202 for y in range(x,n): %o A376202 if gcd(y,n)==gcd(z:=x+y,n)==1 and not (w:=z**2-x*y)//gcd(w,x*y*z)%n: %o A376202 c += 1 %o A376202 return c # _Chai Wah Wu_, Oct 06 2024 %Y A376202 Cf. A000086, A007645, A046530, A290731, A376203, A376755, A376756, A376757. %K A376202 nonn %O A376202 1,3 %A A376202 _Tom Duff_ and _N. J. A. Sloane_, Oct 06 2024