cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376207 Numbers k such that ceiling(2*Pi*k/sqrt(2)) != ceiling(Pi/arcsin(sqrt(2)/(2*k))).

This page as a plain text file.
%I A376207 #13 Sep 17 2024 19:07:16
%S A376207 1,70,569,58704,15770314
%N A376207 Numbers k such that ceiling(2*Pi*k/sqrt(2)) != ceiling(Pi/arcsin(sqrt(2)/(2*k))).
%C A376207 2*n/sqrt(2) > 1/arcsin(sqrt(2)/(2*n)) for all n > 0.
%C A376207 Limit_{x->oo} 2*x/sqrt(2) - 1/arcsin(sqrt(2)/(2*x)) = 0.
%e A376207   n    k=a(n)        2*Pi*k/sqrt(2)   Pi/arcsin(sqrt(2)/(2*k))
%e A376207   1         1         4.44288293816             4.000000000000
%e A376207   2        70       311.00180567109           310.996516371805
%e A376207   3       569      2528.00039181211          2527.999741125982
%e A376207   4     58704    260815.00000164873        260814.999995341832
%e A376207   5  15770314  70065659.00000001744      70065658.999999993965
%Y A376207 Cf. A063448, A376066.
%Y A376207 Cf. A120702.
%K A376207 nonn,more
%O A376207 1,2
%A A376207 _Hugo Pfoertner_, Sep 15 2024