cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376210 Numbers k for which among all possible Pythagorean triangles with the hypotenuse 4*k+1, the minimum of the lengths of the shorter legs is even.

This page as a plain text file.
%I A376210 #6 Sep 22 2024 15:20:54
%S A376210 4,7,9,13,16,18,25,27,34,43,49,57,60,64,70,73,81,87,93,99,100,102,111,
%T A376210 112,114,121,123,127,133,144,148,150,157,160,165,169,175,183,186,189,
%U A376210 196,202,207,211,214,219,225,235,241,244,249,255,256,258,262,265,273
%N A376210 Numbers k for which among all possible Pythagorean triangles with the hypotenuse 4*k+1, the minimum of the lengths of the shorter legs is even.
%e A376210        Hypotenuses                A376210
%e A376210        4k+1                       |  A376211
%e A376210    k   A008846                    |  |  A376208
%e A376210    |   |  Sorted legs [x,y] of    |  |  |  A375750
%e A376210    |   |  Pythagorean triangles   |  |  |  |  A376209
%e A376210    1   5  [3,4]                   .  X  .  X  .
%e A376210    3  13  [5,12]                  .  X  .  X  .
%e A376210    4  17  [8,15]                  X  .  X  .  .
%e A376210    6  25  [7,24]                  .  X  .  X  .
%e A376210    7  29  [20,21]                 X  .  X  .  .
%e A376210    9  37  [12,35]                 X  .  X  .  .
%e A376210   10  41  [9,40]                  .  X  .  X  .
%e A376210   13  53  [28,45]                 X  .  X  .  .
%e A376210   15  61  [11,60]                 .  X  .  X  .
%e A376210   16  65  [16,63],[33,56],[39,52] X  .  X  X  X
%e A376210   18  73  [48,55]                 X  .  X  .  .
%e A376210   21  85  [13,84],[36,77],[51,68] .  X  X  X  X
%o A376210 (PARI) is_a376210_1(n,r=0) = my(c=4*n+1, q=qfbsolve(Qfb(1,0,1), c^2, 3), qd=#q); if(qd<2, 0, my(a=vecmin(abs(concat(q))[1..2*(qd-1)]), b=sqrtint(c^2-a^2)); a%2==r && gcd([a,b,c])==1)
%Y A376210 ({A087937}-1)/4 is a subsequence.
%Y A376210 A094178 \ A376211.
%Y A376210 Cf. A375750, A376208.
%K A376210 nonn
%O A376210 1,1
%A A376210 _Hugo Pfoertner_, Sep 21 2024