A376212 a(n) is the least k such that A001615(k) = 2*n, or -1 if there is no such k, where A001615 is the Dedekind psi function.
-1, 3, 4, 7, -1, 6, 13, -1, 10, 19, -1, 12, -1, -1, 25, 21, -1, 18, 37, -1, 26, 43, -1, 24, -1, -1, 34, 39, -1, 38, 61, -1, -1, 67, -1, 30, 73, -1, -1, 57, -1, 52, -1, -1, 50, -1, -1, 42, 97, -1, 101, 103, -1, 54, 109, 91, 74, -1, -1, 75, -1, -1, 82, 93, -1, 86, -1, -1, 137, 139, -1, 60, -1, -1
Offset: 1
Examples
a(3) = 4 because A001615(4) = 6.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
psi:= proc(n) local p; n * mul(1+1/p, p = numtheory:-factorset(n)) end proc: N:= 100: # for a(1) to a(N) V:= Vector(N,-1): for k from 3 to 2*N-1 do v:= psi(k)/2; if v <= N and V[v] = -1 then V[v]:= k fi od: convert(V,list);
Comments