This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376219 #33 Sep 21 2024 02:23:36 %S A376219 1,10,11,33,88,132,341,505,1111,2828,10504,31512,34138,81103,152207, %T A376219 304414,1378751,2587519,2757502,5175038,126845092,486699103,883779391, %U A376219 973398206,1857177597,1942660159,3095295995,7307153656 %N A376219 Positions of records in A174414. %C A376219 Positive integers k such that the least m for which the concatenation (m+k)||m is prime is greater than it is for all previous k. %C A376219 If k and 10^d+1 are not coprime, then A174414(k) can't have d digits. %C A376219 Therefore, assuming A174414(n) always exists, it is unbounded and this sequence is infinite. %e A376219 a(3) = 11 because A174414(11) = 19 is greater than A174414(1),..., A174414(10). %p A376219 tcat:= proc(a,b) a*10^(1+ilog10(b))+b end proc: %p A376219 f:= proc(n) local k,d; %p A376219 for d from 1 do %p A376219 if igcd(n, 10^d+1) > 1 then next fi; %p A376219 for k from 10^(d-1)+`if`(d=1,0,1) to 10^d by 2 do %p A376219 if isprime(tcat(n+k,k)) then return k fi %p A376219 od od %p A376219 end proc: %p A376219 J:= NULL: m:= 0: %p A376219 for n from 1 to 10^6 do %p A376219 v:= f(n); %p A376219 if v > m then m:= v; J:= J,n fi %p A376219 od: %p A376219 J; %o A376219 (Python) %o A376219 from itertools import count, islice %o A376219 from math import gcd %o A376219 from sympy import isprime %o A376219 def A376219_gen(): # generator of terms %o A376219 c = 0 %o A376219 for n in count(1): %o A376219 for l in count(1): %o A376219 if gcd(n,(m:=10**l)+1)==1: %o A376219 r = m//10 %o A376219 a = m*(n+r)+r %o A376219 for k in range(r,m): %o A376219 if isprime(a): %o A376219 if k>c: %o A376219 yield n %o A376219 c = k %o A376219 break %o A376219 a += m+1 %o A376219 else: %o A376219 continue %o A376219 break %o A376219 A376219_list = list(islice(A376219_gen(), 30)) # _Chai Wah Wu_, Sep 18 2024 %Y A376219 Cf. A174414, A376220. %K A376219 nonn,base,more %O A376219 1,2 %A A376219 _Robert Israel_, Sep 16 2024 %E A376219 a(23)-a(28) from _Chai Wah Wu_, Sep 20 2024