This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376222 #17 Oct 16 2024 21:54:32 %S A376222 4,21,27,39,57,77,183,189,203,205,219,237,253,371,387,391,417,489,565, %T A376222 611,655,667,669,675,687,749,767,799,831,849,897,921,955,1007,1047, %U A376222 1135,1189,1207,1349,1371,1379,1407,1421,1461,1469,1497,1513,1569,1633,1643,1659 %N A376222 Numbers k such that Sum_{i=1..q-1} d(i)^i is prime, where d(1)<d(2)<...<d(q) are the q divisors of k. %C A376222 The corresponding primes are in A376223. %e A376222 39 is a term because the 3 first divisors of 39 are {1,3,13} and 1^1 + 3^2 + 13^3 = 2207 is prime. %e A376222 189 is a term since the 7 first divisors of 189 are {1, 3, 7, 9, 21, 27, 63} and 1^1+3^2+7^3+9^4+21^5+27^6+63^7 = 3939372150671 is prime. %p A376222 with(numtheory):nn:=1700: %p A376222 for n from 1 to nn do: %p A376222 d:=divisors(n):n0:=nops(d):s:=sum(âd[k]^kâ, âkâ=1..n0-1): %p A376222 if isprime(s) %p A376222 then %p A376222 printf(`%d,`,n): %p A376222 else %p A376222 fi: %p A376222 od: %t A376222 Select[Range[1700],PrimeQ[Sum[Part[Divisors[#],i]^i,{i,DivisorSigma[0,#]-1}]] &] (* _Stefano Spezia_, Sep 16 2024 *) %o A376222 (PARI) isok(k) = my(d=divisors(k)); isprime(sum(j=1, #d-1, d[j]^j)); \\ _Michel Marcus_, Sep 16 2024 %Y A376222 Cf. A180852, A376223. %K A376222 nonn %O A376222 1,1 %A A376222 _Michel Lagneau_, Sep 16 2024