cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376223 a(n) = Sum_{i=1..q-1} d(i)^i where d(i) are the q sorted divisors of A376222(n).

This page as a plain text file.
%I A376223 #20 Oct 16 2024 21:55:05
%S A376223 5,353,739,2207,6869,1381,226991,3939372150671,24439,68947,389027,
%T A376223 493049,12289,148927,35726471189,12457,2685629,4330757,1442923,103993,
%U A376223 2248117,24919,11089577,74820287157480518691978649,12008999,1225093,205549,104113,21253943,22665197
%N A376223 a(n) = Sum_{i=1..q-1} d(i)^i where d(i) are the q sorted divisors of A376222(n).
%C A376223 By the definition of A376222 all terms are prime.
%e A376223 a(4) = 2207 because A376222(4) = 39 and the proper divisors of 39 are {1,3,13} with 1^1 + 3^2 + 13^3 = 2207.
%p A376223 with(numtheory):nn:=900:
%p A376223 for n from 1 to nn do:
%p A376223 d:=divisors(n):n0:=nops(d):p:=sum(‘d[k]^k’, ‘k’=1..n0-1):
%p A376223    if isprime(p)
%p A376223     then
%p A376223      printf(`%d,`,p):
%p A376223     else
%p A376223    fi:
%p A376223 od:
%Y A376223 Cf. A180852, A376222.
%K A376223 nonn
%O A376223 1,1
%A A376223 _Michel Lagneau_, Sep 16 2024