A376241 Indices k such that there exists m <= k such that x+y+z = x*y*z is an integer for x = f(k) := A002487(k)/A002487(k+1), y = f(m) and z = (x+y)/(xy-1).
0, 3, 5, 7, 9, 11, 15, 17, 27, 33, 43, 44, 47, 55, 65, 107, 111, 119, 129, 135, 159, 167, 171, 257, 258, 427, 439, 495, 511, 513, 527, 575, 683, 751, 947, 951, 961, 1025, 1127, 1167, 1181, 1539, 1707, 1775, 1797, 1836, 1971, 2015, 2022, 2049, 2079, 2175, 2232, 2289, 2731, 3395, 3511
Offset: 1
Examples
The terms correspond to the following solutions, with x = A002487(k)/A002487(k+1): k | x | y | z | xyz = x+y+z ---+-----+-----+-----+------------ 0 | 0 | 0 | 0 | 0 3 | 2 | 1 | 3 | 6 5 | 3/2 | 1/2 | -8 | -6 7 | 3 | 1 | 2 | 6 9 | 4/3 | 2/3 | -18 | -16 11 | 5/2 | 1/2 | 12 | 15 15 | 4 | 1/2 | 9/2 | 9 17 | 5/4 | 3/4 | -32 | -30
Comments