A376242 a(n) = least m >= 0 such that (x = f(A376241(n)), y = f(m), z = (x+y)/(xy-1)) yields an integer x+y+z = x*y*z, where f(m) = A002487(m)/A002487(m+1).
0, 1, 2, 1, 6, 2, 2, 14, 4, 30, 12, 35, 2, 4, 9, 20, 4, 8, 126, 56, 32, 152, 52, 254, 61, 84, 40, 16, 4, 510, 368, 320, 212, 48, 396, 72, 583, 1022, 792, 368, 98, 188, 340, 80, 583, 339, 140, 32, 233, 2046, 480, 384, 583, 2062, 852, 188, 328
Offset: 1
Keywords
Examples
The terms correspond to the following solutions, with y = A002487(m)/A002487(m+1): m | x | y | z | xyz = x+y+z -----+-----+-----+-----+------------ 0 | 0 | 0 | 0 | 0 1 | 2 | 1 | 3 | 6 2 | 3/2 | 1/2 | -8 | -6 1 | 3 | 1 | 2 | 6 6 | 4/3 | 2/3 | -18 | -16 2 | 5/2 | 1/2 | 12 | 15 2 | 4 | 1/2 | 9/2 | 9 14 | 5/4 | 3/4 | -32 | -30 ...| ... | ... | ... | ...
Crossrefs
Programs
-
PARI
A376242(n, k=A376241(n))={my(p, q=1, x=A002487(k)/A002487(k+1)); for(m=2, k, my(y=(p=q)/q=A002487(m)); x*y != 1 && denominator(x+y+(x+y)/(x*y-1))==1 && return(m-1))} \\ Short of a function A376241(n), one can simply provide a term k = A376241(n) as second argument and omit the first argument n.
Comments