This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376254 #39 Oct 26 2024 22:58:30 %S A376254 32,64,81,121,125,128,169,243,256,289,343,361,512,529,625,729,841,864, %T A376254 961,972,1024,1152,1250,1296,1331,1369,1458,1536,1600,1681,1728,1849, %U A376254 1875,1944,2000,2025,2048,2187,2197,2209,2304,2401,2500,2560,2592,2662,2744,2809,2916,3087,3125,3136 %N A376254 Numbers k such that A376294(k) < k. %C A376254 There are infinitely many numbers in this sequence, since the growth of powers of small primes far outpaces the growth of their digits when concatenated. %C A376254 First differs from A195330 at 320 which is a term there but not here. %H A376254 Haines Hoag, <a href="/A376254/b376254.txt">Table of n, a(n) for n = 1..20000</a> %e A376254 32 is a term since 32=2^5 and 25<32. %e A376254 1152 is a term since 1152=2^7*3^2 and 27*32=864, and 864<1152. %t A376254 f[p_, e_] := 10^IntegerLength[e]*p + e; q[1] = False; q[k_] := Times @@ f @@@ FactorInteger[k] < k; Select[Range[3200], q] (* _Amiram Eldar_, Sep 26 2024 *) %o A376254 (Python) %o A376254 from math import prod %o A376254 from sympy import factorint %o A376254 def ok(n): return prod(int(str(p)+str(e)) for p, e in factorint(n).items()) < n %o A376254 print([k for k in range(1, 3200) if ok(k)]) # _Michael S. Branicky_, Sep 27 2024 %Y A376254 Cf. A376294, A195330. %K A376254 nonn,base %O A376254 1,1 %A A376254 _Haines Hoag_, Sep 17 2024