A379336 Numbers k such that there exists a divisor pair (d, d/k) such that one neither divides nor is coprime to the other.
24, 40, 48, 54, 56, 60, 72, 80, 84, 88, 90, 96, 104, 108, 112, 120, 126, 132, 135, 136, 140, 144, 150, 152, 156, 160, 162, 168, 176, 180, 184, 189, 192, 198, 200, 204, 208, 216, 220, 224, 228, 232, 234, 240, 248, 250, 252, 260, 264, 270, 272, 276, 280, 288, 294
Offset: 1
Examples
a(1) = 24 = 2^3 * 3 = 4*6, both composite; gcd(4,6) = 2, 4 does not divide 6 (type C). a(2) = 40 = 2^3 * 5 = 4*10, gcd(4,10) = 2 (type C). a(3) = 48 = 2^4 * 3 = 6*8, gcd(6,8) = 2 (type C). a(6) = 60 = 2^2 * 3 * 5 = 6*10, gcd(6,10) = 2 (type A). a(12) = 96 = 2^5 * 3 = 6*16 = 8*12, both type C. a(38) = 216 = 2^3 * 3^3 = 4*54 (type C) = 9*24 (type C) = 12*18 (type B) a(1605) = 5400 = 2^3 * 3^3 * 5^2 = 4*1350 (type C) = 24*225 (type A) = 60*90 (type B) = A378769(1). a(10475) = 32400 = 2^4 * 3^4 * 5^2 = 8*4050 (type C) = 48*675 (type A) = 120*270 (type B) = A378984(1) = A378769(14), etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Chart of (d, a(n)/d) for a(n) = 1..144, showing only the smallest d for each type of neutral relation, where type A is shown in gray, type B in black, and type C in either blue or gold.
Programs
-
Mathematica
nn = 300; mm = Floor@ Sqrt[nn]; p = 2; q = 3; Complement[ Select[Range[nn], And[#2 > #1 > 1, #2 > 3] & @@ {PrimeNu[#], PrimeOmega[#]} &], Union[Reap[ While[p <= mm, q = NextPrime[p]; While[p*q <= mm, If[p != q, Sow[p*q]]; q = NextPrime[q]]; p = NextPrime[p] ] ][[-1, 1]] ]^2 ]
Comments