cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376277 The least increasing sequence starting with 1, such that the determinants of the Hankel matrices H1 = [a(0), a(1), ..., a(n); ...; a(n), a(n+1), ..., a(2*n)] and H2 = [a(1), a(2), ..., a(n+1); ...; a(n+1), a(n+2), ..., a(2*n+1)] are > 0.

This page as a plain text file.
%I A376277 #68 Mar 30 2025 06:31:45
%S A376277 1,2,5,13,35,98,287,883,2858,9708,34411,126337,476767,1836851,7185420,
%T A376277 28420613,113317776,454468077,1830556209,7397188271,29965426959,
%U A376277 121620119888,494365414071,2011965781648,8196475452837,33419092543257,136353532725534,556669705441210
%N A376277 The least increasing sequence starting with 1, such that the determinants of the Hankel matrices H1 = [a(0), a(1), ..., a(n); ...; a(n), a(n+1), ..., a(2*n)] and H2 = [a(1), a(2), ..., a(n+1); ...; a(n+1), a(n+2), ..., a(2*n+1)] are > 0.
%C A376277 A Stieltjes moment sequence by its definition.
%C A376277 The Hankel sequence transform gives {1, 1, 1, 1, 1, ...}.
%C A376277 The definition causes that the Hankel sequence transform starting with the second term of this sequence becomes {2, 1, 1, 1, ...}. This single exceptional 2 causes high complexity in the generating function and makes a nice combinatorial interpretation less likely, therefore the keyword "less" was considered.
%F A376277 G.f.: 1/(1-2*x/(1-(1/2)*x/(1-(1/2)*x/(1-2*x/(1-C(x)*x))))), C(x) is the generating function of the Catalan numbers.
%F A376277 G.f.: (1 - sqrt(1 - 4*x)*(-1 + x) - 5*x + 2*x^2)/(1 - 7*x + 11*x^2 + sqrt(1 - 4*x)*(1 - 3*x + x^2)).
%F A376277 (sqrt((x - 4)/x) + 2*x*(13 + (x - 7)*x) - 9)/(2*((x - 4)*(x - 3)*(x - 2)*x - 1)) = Sum_{k>=0} a(k)/x^(k+1).
%F A376277 a(n) = Sum_{k=1..floor((n+1)/2)} (binomial(n-k+1, k) + binomial(n-k, k-1) - binomial(n-k-3, k-4))*(-1)^(k+1)*a(n-k), for n >= 3.
%F A376277 a(n) = Sum_{k=1..floor((n+1)/2)} (A034807(n+1, k) - A011973(n+1, k-4))*(-1)^(k+1)*a(n-k), for n >= 3.
%o A376277 (PARI)
%o A376277 hankelok(s) = {my(m1=floor((#s+1)/2)); my(m2=floor(#s/2)); my(h1=matrix(m1,m1,x,y,s[x+y-1]));  my(h2=matrix(m2,m2,x,y,s[x+y])); return((matdet(h1) > 0) && (matdet(h2) > 0))}
%o A376277 a(max_n) = {my(s=[1,2],k=3); while(#s < max_n, while(hankelok(concat(s,[k]))==0,k=k+1); s=concat(s,[k])); return(s)}
%o A376277 (PARI)
%o A376277 my(N=30, x='x+O('x^N)); Vec(1/(1-2*x/(1-(1/2)*x/(1-(1/2)*x/(1-2*x/(1-((1-sqrt(1-4*x))/(2*x))*x))))))
%o A376277 (PARI)
%o A376277 a(n) = if(n<3, [1, 2, 5][n+1], sum(k=1, floor((n+1)/2), (binomial(n-k+1, k)+binomial(n-k, k-1)-binomial(n-k-3, k-4))*(-1)^(k+1)*a(n-k)))
%Y A376277 Cf. A000108 (We obtain the Catalan numbers if we use "least positive sequence" in the definition instead of "least increasing").
%Y A376277 Cf. A375181 (Binomial transform).
%Y A376277 Cf. A034807, A011973.
%Y A376277 Cf. also A055877, A055878, A055879, A350349.
%K A376277 nonn,less
%O A376277 0,2
%A A376277 _Thomas Scheuerle_, Sep 23 2024