This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376279 #20 Sep 20 2024 06:06:09 %S A376279 0,1,3,6,8,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,64, %T A376279 66,69,72,75,78,81,84,87,90,93,96,99,102,105,108,111,114,117,120,123, %U A376279 125,126,129,132,135,138,141,144,147,150,153,156,159,162,165,168 %N A376279 Numbers k such that k^k is a cube. %C A376279 Strict subsequence of A267415. For instance, 76, 112, 172, 364, 427, 532 are not terms of this sequence, but are terms of A267415. %F A376279 k is a term if and only if k is a multiple of 3 or k is a cube. %p A376279 q:= n-> andmap(i-> irem(n*i[2], 3)=0, ifactors(n)[2]): %p A376279 select(q, [$0..200])[]; # _Alois P. Heinz_, Sep 19 2024 %t A376279 Join[{0},Select[Range[170], IntegerQ[#^(#/3)] &]] (* _Stefano Spezia_, Sep 18 2024 *) %o A376279 (Python) %o A376279 from sympy import integer_nthroot %o A376279 def A376279(n): %o A376279 def f(x): return n-1+x-x//3-integer_nthroot(x,3)[0]+integer_nthroot(x//27,3)[0] %o A376279 m, k = n-1, f(n-1) %o A376279 while m != k: m, k = k, f(k) %o A376279 return m %o A376279 (Python) %o A376279 from itertools import count, islice %o A376279 from sympy import integer_nthroot %o A376279 def A376279_gen(startvalue=0): # generator of terms >= startvalue %o A376279 return filter(lambda k:not k%3 or integer_nthroot(k,3)[1],count(max(startvalue,0))) %o A376279 A376279_list = list(islice(A376279_gen(),30)) %o A376279 (PARI) isok(k) = ispower(k^k, 3); \\ _Michel Marcus_, Sep 18 2024 %Y A376279 Cf. A267415, A371587. %Y A376279 Union of A000578 and A008585. %K A376279 nonn %O A376279 1,3 %A A376279 _Chai Wah Wu_, Sep 18 2024