A376281 Number of pairs (d, k/d), d | k, d < k/d, such that gcd(d, k/d) is not in {1, d, k/d}, where k is in A379336.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 2, 1, 3, 3, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 4, 1, 1, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1
Offset: 1
Keywords
Examples
Let s(n) = A379336(n). a(1) = 1 since s(1) = 24 = 4*6. a(2) = 1 since s(2) = 40 = 4*10. a(3) = 1 since s(3) = 48 = 6*8. a(12) = 2 since s(12) = 96 = 6*16 = 8*12. a(16) = 3 since s(16) = 120 = 4*30 = 6*20 = 10*12. a(44) = 4 since s(44) = 240 = 6*40 = 8*30 = 10*24 = 12*20. a(75) = 5 since s(75) = 360 = 4*90 = 10*36 = 12*30 = 15*24 = 18*20. a(105) = 6 since s(105) = 480 = 6*80 = 8*60 = 10*48 = 12*40 = 16*30 = 20*24, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nn = 500; mm = Floor@ Sqrt[nn]; p = 2; q = 3; s = Complement[ Select[Range[nn], And[#2 > #1 > 1, #2 > 3] & @@ {PrimeNu[#], PrimeOmega[#]} &], Union[Reap[ While[p <= mm, q = NextPrime[p]; While[p*q <= mm, If[p != q, Sow[p*q]]; q = NextPrime[q]]; p = NextPrime[p]] ][[-1, 1]] ]^2 ]; Table[k = s[[n]]; 1/2*DivisorSum[k, 1 &, ! MemberQ[{1, #1, #2}, GCD[#1, #2]] & @@ {#, k/#} &], {n, Length[s]}]
Comments