A376286 n! less trailing zeros (A004154) (mod nextprime(n)).
1, 1, 2, 1, 4, 5, 2, 9, 6, 10, 10, 3, 10, 7, 13, 11, 6, 8, 11, 15, 7, 9, 14, 13, 22, 20, 27, 4, 25, 16, 17, 7, 2, 29, 24, 10, 27, 3, 32, 18, 31, 21, 22, 15, 2, 9, 38, 26, 29, 43, 48, 10, 43, 55, 20, 51, 24, 11, 48, 2, 12, 57, 50, 1, 64, 14, 53, 8, 47
Offset: 0
Programs
-
Mathematica
a[n_] := Mod[n!/10^IntegerExponent[n!, 10], NextPrime[n]]; Array[a, 69, 0](* Becomes quicker as n increases and it uses less resources. For me, this is around 2 million *)g[n_, p_] := Block[{s = 0, e = 1}, While[t = Floor[n/p^e]; t > 0, s += t; e++]; s];f[n_] := Block[{m = NextPrime@ n, p = 1, q = 7}, p = PowerMod[2, g[n, 2] - g[n, 5], m]; p = Mod[p*PowerMod[3, g[n, 3], m], m]; While[q < n +1, p = Mod[p*PowerMod[q, g[n, q], m], m]; q = NextPrime@ q]; p]
-
Python
from functools import reduce from sympy import nextprime from sympy.ntheory.factor_ import digits def A376286(n): return ((p:=nextprime(n))-1)*pow(reduce(lambda i, j:i*j%p, range(n+1,p),1),-1,p)*pow(10,sum(digits(n,5)[1:])-n>>2,p)%p # Chai Wah Wu, Oct 18 2024