cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376292 E.g.f. satisfies A(x) = 1 - (x*A(x))^3 * log(1 - x*A(x)).

This page as a plain text file.
%I A376292 #9 Sep 19 2024 11:06:25
%S A376292 1,0,0,0,24,60,240,1260,169344,1693440,17150400,187941600,12778698240,
%T A376292 271809457920,5031211086720,91848556800000,4643532967772160,
%U A376292 154079136039628800,4367731446302515200,117143657916761548800,5457792037686441984000
%N A376292 E.g.f. satisfies A(x) = 1 - (x*A(x))^3 * log(1 - x*A(x)).
%H A376292 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A376292 a(n) = (n!)^2 * Sum_{k=0..floor(n/4)} |Stirling1(n-3*k,k)|/( (n-3*k)! * (n-k+1)! ).
%F A376292 E.g.f.: (1/x) * Series_Reversion( x/(1 - x^3*log(1 - x)) ).
%o A376292 (PARI) a(n) = n!^2*sum(k=0, n\4, abs(stirling(n-3*k, k, 1))/((n-3*k)!*(n-k+1)!));
%Y A376292 Cf. A138013, A371121, A371138.
%K A376292 nonn
%O A376292 0,5
%A A376292 _Seiichi Manyama_, Sep 19 2024