cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376294 The product of n's prime powers, with the base and exponent concatenated.

This page as a plain text file.
%I A376294 #37 Oct 24 2024 14:46:45
%S A376294 1,21,31,22,51,651,71,23,32,1071,111,682,131,1491,1581,24,171,672,191,
%T A376294 1122,2201,2331,231,713,52,2751,33,1562,291,33201,311,25,3441,3591,
%U A376294 3621,704,371,4011,4061,1173,411,46221,431,2442,1632,4851,471,744,72,1092,5301
%N A376294 The product of n's prime powers, with the base and exponent concatenated.
%C A376294 Multiplicative with a(p^e) = the concatenation of p and e.
%C A376294 A prime which occurs just once in the factorization of n is taken as exponent 1 so that for instance n = 7 = 7^1 becomes 71.
%C A376294 It is unknown whether there are any fixed points a(n) = n beyond n=1.
%H A376294 Haines Hoag, <a href="/A376294/b376294.txt">Table of n, a(n) for n = 1..10000</a>
%H A376294 Combo Class, <a href="https://www.youtube.com/watch?v=pylw9t4j6bM">The Mysterious Pattern I Found Within Prime Factorizations</a>, Sep 12 2024.
%F A376294 For primes p, a(p) = 10p + 1.
%e A376294 For n=5, a(5) = 51 since 5=5^1.
%e A376294 For n=20, a(20) = 22*51 = 1122 since 20=2^2*5^1.
%p A376294 a:= n-> mul(parse(cat(i[])), i=ifactors(n)[2]):
%p A376294 seq(a(n), n=1..51);  # _Alois P. Heinz_, Sep 19 2024
%t A376294 f[p_, e_] := 10^IntegerLength[e] * p + e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 26 2024 *)
%o A376294 (PARI) a(n)={my(f=factor(n)); prod(i=1, #f~, my([b,e]=f[i,]); b*10^(1+logint(e,10))+e)} \\ _Andrew Howroyd_, Sep 19 2024
%o A376294 (Python)
%o A376294 from math import prod
%o A376294 from sympy import factorint
%o A376294 def a(n): return prod(int(str(p)+str(e)) for p, e in factorint(n).items())
%o A376294 print([a(n) for n in range(1, 52)]) # _Michael S. Branicky_, Sep 27 2024
%Y A376294 Cf. A376254 (indices of a(n) < n), A287483 (indices of local maxima).
%K A376294 nonn,base,mult
%O A376294 1,2
%A A376294 _Haines Hoag_, Sep 19 2024