This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376315 #29 Oct 01 2024 10:52:31 %S A376315 2,4,128,256,686,1372,2000,4000,4394,8192,8788,13718,16384,21296, %T A376315 27436,31250,42592,43904,59582,62500,78608,87808,101306,119164,128000, %U A376315 157216,159014,194672,202612,235298,256000,281216,318028,332750,389344,390224,453962,470596 %N A376315 Positive numbers k such that 2*k^k is a cube. %C A376315 {a(n)} UNION A376291 = positive numbers k such that k^k is not a cube and can be expressed as (x^3 + y^3)/2 for nonnegative integers x, y. %C A376315 All terms are even. %H A376315 Chai Wah Wu, <a href="/A376315/b376315.txt">Table of n, a(n) for n = 1..897</a> %o A376315 (Python) %o A376315 from itertools import count, islice %o A376315 from sympy import factorint %o A376315 def A376315_gen(startvalue=2): # generator of terms >= startvalue %o A376315 for k in count(max(startvalue+(startvalue&1),2),2): %o A376315 f = {p:k*e for p,e in factorint(k).items()} %o A376315 f[2] += 1 %o A376315 if not any(v%3 for v in f.values()): %o A376315 yield k %o A376315 A376315_list = list(islice(A376315_gen(),30)) %Y A376315 Cf. A376291, A376279. %K A376315 nonn %O A376315 1,1 %A A376315 _Chai Wah Wu_, Sep 20 2024