This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376319 #17 Oct 23 2024 01:21:59 %S A376319 1,4,14,34,103,228,665,2096,4787,14239,31330,91728,199328,580128, %T A376319 1834665,4223092,12667903,28207395,83435822,267154051,623837740, %U A376319 1891453021,4265101202,12735718304,28359351604,84126071303,270338873771,634653510356,1933488496208 %N A376319 A Catalan-like sequence formed by summing the truncation of the terms of the fourth convolution of the Catalan Triangle where the number of row terms are truncated to ceiling((n+4)*log(3)/log(2)) - (n+4). %C A376319 a(1) = 1, all other rows are summed following application of the truncation formula. %C A376319 Equivalent to truncation of A002057 starting from the n(4) term. %F A376319 Same as for a normal fourth convolution Catalan triangle T(n,k), read by rows, each term is the sum of the entries above and to the left, i.e., T(n,k) = Sum_{j=0..k} T(n-1,j) but where j is limited to the truncated length. %e A376319 When n=6, number of terms is restricted to 6, dropping 2 terms from the standard triangle; ceiling((6+4)*log(3)/log(2)) - (6+4) = 6. %e A376319 When n=9, number of terms is restricted to 8, dropping 3 terms; ceiling((9+4)*log(3)/log(2)) - (9+4) = 8. %e A376319 etc. %e A376319 Truncating A002057 at this point, with dropped terms indicated by - and summing the remaining triangle terms in the normal way results in: %e A376319 n sum truncated triangle terms %e A376319 1 1 = 1; %e A376319 2 4 = 1, 1, 1, 1; %e A376319 3 14 = 1, 2, 3, 4, 4; %e A376319 4 34 = 1, 3, 6, 10, 14, -; %e A376319 5 103 = 1, 4, 10, 20, 34, 34, -; %e A376319 6 228 = 1, 5, 15, 35, 69, 103, -, -; %e A376319 7 665 = 1, 6, 21, 56, 125, 228, 228, -, -; %e A376319 8 2096 = 1, 7, 28, 84, 209, 437, 665, 665, -, -; %e A376319 9 4787 = 1, 8, 36, 120, 329, 766, 1431, 2096, -, -, -; %e A376319 10 14239 = 1, 9, 45, 165, 494, 1260, 2691, 4787, 4787, -, -, -; %e A376319 ... %o A376319 (PARI) lista(nn) = { %o A376319 my(terms(j)=ceil((j+4)*log(3)/log(2)) - (j+4)); %o A376319 my(T=vector(nn)); %o A376319 my(S=vector(nn)); %o A376319 for(y=1, nn, %o A376319 if(y==1, %o A376319 T[1]=[1]; %o A376319 S[1]=1 %o A376319 , %o A376319 my(k=terms(y)); %o A376319 T[y]=vector(k); %o A376319 for(i=1, k, if(i==1,T[y][i]=1,if(i<=length(T[y-1]),T[y][i]=T[y-1][i]+T[y][i-1],T[y][i]=T[y][i-1]))); %o A376319 S[y]=vecsum(T[y]) %o A376319 ); %o A376319 ); %o A376319 S; %o A376319 } %Y A376319 Cf. A009766, A000108, A002057, A374244, Half Catalan A000992. %K A376319 nonn,easy %O A376319 1,2 %A A376319 _Rob Bunce_, Sep 20 2024