A376325 A Catalan-like sequence formed by summing the truncation of the terms of a Catalan Triangle A009766 where the number of row terms are truncated to ceiling((n+3)*log(3)/log(2)) - (n+4).
1, 2, 5, 14, 28, 76, 151, 412, 1239, 2689, 7724, 16351, 46607, 98276, 280035, 871218, 1967577, 5819850, 12749014, 37260985, 118163637, 272787542, 819934670, 1829959304, 5422130623, 11963162678, 35243160809, 112614062317, 262572197079, 795710438547, 1794155974237
Offset: 1
Examples
When n=6, number of terms is restricted to 5 dropping 1 term; ceiling((6+3)*log(3)/log(2)) - (6+4) = 5. When n=10, number of terms is restricted to 7 dropping 3 terms; ceiling((10+3)*log(3)/log(2)) - (10+4) = 7. Truncating A009766 at the point indicated by - and summing the remaining triangle terms in the normal way results in: row sum truncated triangle terms 1 1 = 1; 2 2 = 1, 1; 3 5 = 1, 2, 2; 4 14 = 1, 3, 5, 5; 5 28 = 1, 4, 9, 14, -; 6 76 = 1, 5, 14, 28, 28, -; 7 151 = 1, 6, 20, 48, 76, -, -; 8 412 = 1, 7, 27, 75, 151, 151, -, -; 9 1239 = 1, 8, 35, 110, 261, 412, 412, -, -; 10 2689 = 1, 9, 44, 154, 415, 827, 1239, -, -, -; ...
Programs
-
PARI
lista(nn) = { my(terms(j)=ceil((j+3)*log(3)/log(2)) - (j+4)); my(T=vector(nn)); my(S=vector(nn)); for(y=1, nn, if(y==1, T[1]=[1]; S[1]=1 , my(k=terms(y)); T[y]=vector(k); for(i=1, k, if(i==1,T[y][i]=1,if(i<=length(T[y-1]),T[y][i]=T[y-1][i]+T[y][i-1],T[y][i]=T[y][i-1]))); S[y]=vecsum(T[y]) ); ); S; }
Formula
Same as for a normal Catalan triangle T(n,k), read by rows, each term is the sum of the entries above and to the left, i.e., T(n,k) = Sum_{j=0..k} T(n-1,j) but where j is limited to the truncated length.
Comments