This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376340 #9 Sep 23 2024 22:43:04 %S A376340 1,4,9,12,18,24,34,47,60,79,117,178,198,206,215,244,311,402,465,614, %T A376340 782,1078,1109,1234,1890,1939,1961,2256,2290,3149,3377,3460,3502,3722, %U A376340 3871,4604,4694,6634,8073,8131,8793,12370,12661,14482,14990,15912,17140,19166 %N A376340 Sorted positions of first appearances in A057820, the sequence of first differences of prime-powers. %e A376340 The terms together with their prime indices begin: %e A376340 1: {} %e A376340 4: {1,1} %e A376340 9: {2,2} %e A376340 12: {1,1,2} %e A376340 18: {1,2,2} %e A376340 24: {1,1,1,2} %e A376340 34: {1,7} %e A376340 47: {15} %e A376340 60: {1,1,2,3} %e A376340 79: {22} %e A376340 117: {2,2,6} %e A376340 178: {1,24} %e A376340 198: {1,2,2,5} %e A376340 206: {1,27} %e A376340 215: {3,14} %e A376340 244: {1,1,18} %t A376340 q=Differences[Select[Range[100],PrimePowerQ]]; %t A376340 Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&] %Y A376340 For compression instead of sorted firsts we have A376308. %Y A376340 For run-lengths instead of sorted firsts we have A376309. %Y A376340 For run-sums instead of sorted firsts we have A376310. %Y A376340 The version for squarefree numbers is the unsorted version of A376311. %Y A376340 The unsorted version is A376341. %Y A376340 A000040 lists the prime numbers, differences A001223. %Y A376340 A000961 and A246655 list prime-powers, first differences A057820. %Y A376340 A003242 counts compressed compositions, ranks A333489. %Y A376340 A005117 lists squarefree numbers, differences A076259. %Y A376340 A024619 and A361102 list non-prime-powers, first differences A375708. %Y A376340 A116861 counts partitions by compressed sum, by compressed length A116608. %Y A376340 Cf. A001597, A006549, A007916, A025475, A037201, A053289, A078147, A110969, A120430, A174965, A373948, A375706. %K A376340 nonn %O A376340 1,2 %A A376340 _Gus Wiseman_, Sep 22 2024