cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376343 Positions of twos in the run-compressed (A037201) first differences (A001223) of the primes (A000040).

Original entry on oeis.org

2, 4, 6, 9, 12, 15, 18, 24, 26, 31, 33, 37, 39, 41, 44, 47, 50, 53, 57, 62, 73, 75, 81, 90, 95, 99, 102, 105, 108, 127, 129, 131, 135, 139, 156, 158, 161, 163, 167, 173, 182, 187, 190, 193, 196, 205, 210, 214, 216, 232, 235, 241, 244, 247, 254, 263, 265, 270
Offset: 1

Views

Author

Gus Wiseman, Sep 26 2024

Keywords

Comments

We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, we can remove all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).

Examples

			The sequence of prime numbers (A000040) is:
  2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, ...
with first differences (A001223):
  1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, ...
with run-compression (A037201):
  1, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, ...
with twos at (A376343):
  2, 4, 6, 9, 12, 15, 18, 24, 26, 31, 33, 37, 39, 41, 44, 47, 50, 53, 57, 62, 73, ...
		

Crossrefs

Positions of 2's in A037201.
The repeats were at positions A064113 before being omitted.
A variation for squarefree numbers is A376342.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A005117 lists squarefree numbers, differences A076259 (ones A375927).
A013929 lists nonsquarefree numbers, differences A078147.
A333254 lists run-lengths of differences between consecutive primes.

Programs

  • Mathematica
    Join@@Position[First/@Split[Differences[Select[Range[100],PrimeQ]]],2]

Formula

For just the odd primes we have a(n) - 1.