This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376351 #12 Sep 21 2024 13:25:46 %S A376351 1,0,0,6,0,60,2520,840,181440,6063120,11642400,1437337440,44626982400, %T A376351 254278664640,24575197046400,756010400745600,9284429893939200, %U A376351 784770965801222400,25067890370095372800,541810656586725926400,42351473267452597248000,1461224653966598493772800,48020130717168717960652800 %N A376351 E.g.f. satisfies A(x) = exp( x*A(x)*(exp(x^2*A(x)^2) - 1) ). %H A376351 <a href="/index/Res#revert">Index entries for reversions of series</a> %F A376351 E.g.f.: (1/x) * Series_Reversion( x*exp(x*(1 - exp(x^2))) ). %F A376351 a(n) = n! * Sum_{k=0..floor(n/2)} (n+1)^(n-2*k-1) * Stirling2(k,n-2*k)/k!. %o A376351 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*exp(x*(1-exp(x^2))))/x)) %o A376351 (PARI) a(n) = n!*sum(k=0, n\2, (n+1)^(n-2*k-1)*stirling(k, n-2*k, 2)/k!); %Y A376351 Cf. A030019, A356785, A371145. %Y A376351 Cf. A357966. %K A376351 nonn %O A376351 0,4 %A A376351 _Seiichi Manyama_, Sep 21 2024