cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376351 E.g.f. satisfies A(x) = exp( x*A(x)*(exp(x^2*A(x)^2) - 1) ).

This page as a plain text file.
%I A376351 #12 Sep 21 2024 13:25:46
%S A376351 1,0,0,6,0,60,2520,840,181440,6063120,11642400,1437337440,44626982400,
%T A376351 254278664640,24575197046400,756010400745600,9284429893939200,
%U A376351 784770965801222400,25067890370095372800,541810656586725926400,42351473267452597248000,1461224653966598493772800,48020130717168717960652800
%N A376351 E.g.f. satisfies A(x) = exp( x*A(x)*(exp(x^2*A(x)^2) - 1) ).
%H A376351 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A376351 E.g.f.: (1/x) * Series_Reversion( x*exp(x*(1 - exp(x^2))) ).
%F A376351 a(n) = n! * Sum_{k=0..floor(n/2)} (n+1)^(n-2*k-1) * Stirling2(k,n-2*k)/k!.
%o A376351 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(serreverse(x*exp(x*(1-exp(x^2))))/x))
%o A376351 (PARI) a(n) = n!*sum(k=0, n\2, (n+1)^(n-2*k-1)*stirling(k, n-2*k, 2)/k!);
%Y A376351 Cf. A030019, A356785, A371145.
%Y A376351 Cf. A357966.
%K A376351 nonn
%O A376351 0,4
%A A376351 _Seiichi Manyama_, Sep 21 2024