This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376355 #7 Sep 22 2024 18:18:21 %S A376355 1,4,7,11,14,16,19,22,25,29,32,35,37,40,43,46,49,52,56,59,62,67,70,73, %T A376355 77,79,82,85,89,92,95,98,102,106,109,112,116,119,121,124,127,131,134, %U A376355 137,140,143,147,150,152,154,157,160,164,167,169,172,175,178,182 %N A376355 Numbers that end in 1 when written in base of triangular numbers (cf. A000462). %C A376355 Every positive integer is in exactly one of the following sequences: A376355, this sequence, or A376356. %C A376355 Conjecture: {a(n+1) - a(n) : n >= 1} = {2,3,4,5,6}. (See related conjectures at A376354 and A376356.) %t A376355 a[n_, poly_] := FromDigits[FoldList[{Mod[#[[1]], #2], Quotient[#[[1]], #2]} &, {n, 0}, Reverse[Map[(poly - 2) # (# - 1)/2 + # &, Range[Floor[Sqrt[2 n]]]]]][[All, 2]]] %t A376355 t3 = Map[a[#, 3] &, Range[200]]; (* A000462 *) %t A376355 m = Mod[t3, 10] %t A376355 Table[Flatten[Position[m, r]], {r, 0, 2}] %t A376355 p0 = Flatten[Position[m, 0]] (* A376354 *) %t A376355 p1 = Flatten[Position[m, 1]] (* this sequence *) %t A376355 p2 = Flatten[Position[m, 2]] (* A376356 *) %t A376355 (* _Peter J. C. Moses_, Sep 20 2024 *) %Y A376355 Cf. A000462, A376354, A376356, A376357. %K A376355 base,nonn %O A376355 1,2 %A A376355 _Clark Kimberling_, Sep 22 2024