This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376356 #11 Sep 29 2024 02:38:35 %S A376356 2,5,8,12,17,20,23,26,30,33,38,41,44,47,50,53,57,60,63,68,71,74,80,83, %T A376356 86,90,93,96,99,103,107,110,113,117,122,125,128,132,138,141,144,148, %U A376356 155,158,161,165,170,173,176,179,183,188,192,195,198 %N A376356 Positions of numbers in A000462 that end in 2. %C A376356 Every positive integer is in exactly one of the following sequences: A376354, A376355, or this sequence. %C A376356 Conjecture: {a(n+1) - a(n) : n >= 1} = {3,4,5,6,7,8,9}. (See related conjectures at A376354 and A376355.) %t A376356 a[n_, poly_] := FromDigits[FoldList[{Mod[#[[1]], #2], Quotient[#[[1]], #2]} &, {n, 0}, Reverse[Map[(poly - 2) # (# - 1)/2 + # &, Range[Floor[Sqrt[2 n]]]]]][[All, 2]]] %t A376356 t3 = Map[a[#, 3] &, Range[200]]; (* A000462 *) %t A376356 m = Mod[t3, 10] %t A376356 Table[Flatten[Position[m, r]], {r, 0, 2}] %t A376356 p0 = Flatten[Position[m, 0]] (* A376354 *) %t A376356 p1 = Flatten[Position[m, 1]] (* A376355 *) %t A376356 p2 = Flatten[Position[m, 2]] (* this sequence *) %t A376356 (* _Peter J. C. Moses_, Sep 20 2024 *) %Y A376356 Cf. A000462, A376354, A376355, A376357. %K A376356 nonn,base %O A376356 1,1 %A A376356 _Clark Kimberling_, Sep 25 2024