This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376357 #7 Sep 28 2024 12:59:35 %S A376357 4,8,9,13,16,20,24,25,29,33,34,36,40,44,45,49,53,57,58,62,64,68,72,73, %T A376357 77,80,81,85,89,90,94,97,100,104,108,109,113,116,120,121,125,129,130, %U A376357 134,137,141,144,148,152,153,157,160,164,168,169,173,177,178,182 %N A376357 Positions of numbers in A007961 that end in 0. %C A376357 Every positive integer is in exactly one of these sequences: this sequence, A376358, A376359, or A376360. %C A376357 Conjecture: {a(n+1) - a(n) : n >= 1} = {1,2,3,4}. (See related conjectures at A376358-A376360.) %t A376357 a[n_, poly_] := FromDigits[FoldList[{Mod[#[[1]], #2], Quotient[#[[1]], #2]} &, {n, 0}, Reverse[Map[(poly - 2) # (# - 1)/2 + # &, %t A376357 Range[Floor[Sqrt[2 n]]]]]][[All, 2]]] %t A376357 t4 = Map[a[#, 4] &, Range[200]]; (* A007961 *) %t A376357 m = Mod[t4, 10]; %t A376357 Table[Flatten[Position[m, r]], {r, 0, 2}] %t A376357 p0 = Flatten[Position[m, 0]] (* this sequence *) %t A376357 p1 = Flatten[Position[m, 1]] (* A376358 *) %t A376357 p2 = Flatten[Position[m, 2]] (* A376359 *) %t A376357 p3 = Flatten[Position[m, 3]] (* A376360 *) %t A376357 (* _Peter J. C. Moses_, Sep 20 2024 *) %Y A376357 Cf. A007961, A376354, A376358, A376359, A376360. %K A376357 nonn,base %O A376357 1,1 %A A376357 _Clark Kimberling_, Sep 25 2024