cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376357 Positions of numbers in A007961 that end in 0.

This page as a plain text file.
%I A376357 #7 Sep 28 2024 12:59:35
%S A376357 4,8,9,13,16,20,24,25,29,33,34,36,40,44,45,49,53,57,58,62,64,68,72,73,
%T A376357 77,80,81,85,89,90,94,97,100,104,108,109,113,116,120,121,125,129,130,
%U A376357 134,137,141,144,148,152,153,157,160,164,168,169,173,177,178,182
%N A376357 Positions of numbers in A007961 that end in 0.
%C A376357 Every positive integer is in exactly one of these sequences: this sequence, A376358, A376359, or A376360.
%C A376357 Conjecture: {a(n+1) - a(n) : n >= 1} = {1,2,3,4}. (See related conjectures at A376358-A376360.)
%t A376357 a[n_, poly_] := FromDigits[FoldList[{Mod[#[[1]], #2], Quotient[#[[1]], #2]} &, {n, 0}, Reverse[Map[(poly - 2)  #  (# - 1)/2 + # &,
%t A376357 Range[Floor[Sqrt[2  n]]]]]][[All, 2]]]
%t A376357 t4 = Map[a[#, 4] &, Range[200]];  (* A007961 *)
%t A376357 m = Mod[t4, 10];
%t A376357 Table[Flatten[Position[m, r]], {r, 0, 2}]
%t A376357 p0 = Flatten[Position[m, 0]]  (* this sequence *)
%t A376357 p1 = Flatten[Position[m, 1]]  (* A376358 *)
%t A376357 p2 = Flatten[Position[m, 2]]  (* A376359 *)
%t A376357 p3 = Flatten[Position[m, 3]]  (* A376360 *)
%t A376357 (* _Peter J. C. Moses_, Sep 20 2024 *)
%Y A376357 Cf. A007961, A376354, A376358, A376359, A376360.
%K A376357 nonn,base
%O A376357 1,1
%A A376357 _Clark Kimberling_, Sep 25 2024