This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376359 #7 Sep 28 2024 12:59:12 %S A376359 2,6,11,15,18,22,27,31,38,42,47,51,55,60,66,70,75,79,83,87,92,96,99, %T A376359 102,106,111,115,118,123,127,132,136,139,143,146,150,155,159,162,166, %U A376359 171,175,180,184,187,191,198,202,207,211,214,218,223,227,231,236,240 %N A376359 Positions of numbers in A007961 that end in 2. %C A376359 Every positive integer is in exactly one of these sequences: A376357, A376358, this sequence, or A376360. %C A376359 Conjecture: {a(n+1) - a(n) : n >= 1} = {3,4,5,6,7,8,9,10}. (See related conjectures at A376357, A376358, and A376360.) %t A376359 a[n_, poly_] := FromDigits[FoldList[{Mod[#[[1]], #2], Quotient[#[[1]], #2]} &, {n, 0}, Reverse[Map[(poly - 2) # (# - 1)/2 + # &, %t A376359 Range[Floor[Sqrt[2 n]]]]]][[All, 2]]] %t A376359 t4 = Map[a[#, 4] &, Range[200]]; (* A007961 *) %t A376359 m = Mod[t4, 10]; %t A376359 Table[Flatten[Position[m, r]], {r, 0, 2}] %t A376359 p0 = Flatten[Position[m, 0]] (* A376357 *) %t A376359 p1 = Flatten[Position[m, 1]] (* A376359 *) %t A376359 p2 = Flatten[Position[m, 2]] (* this sequence *) %t A376359 p3 = Flatten[Position[m, 3]] (* A376360 *) %t A376359 (* _Peter J. C. Moses_, Sep 20 2024 *) %Y A376359 Cf. A007961, A376354, A376357, A376358, A376360. %K A376359 nonn,base %O A376359 1,1 %A A376359 _Clark Kimberling_, Sep 25 2024