This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A376360 #7 Sep 28 2024 12:58:50 %S A376360 3,7,12,19,23,28,32,39,43,48,52,56,61,67,71,76,84,88,93,103,107,112, %T A376360 119,124,128,133,140,147,151,156,163,167,172,176,181,188,192,199,203, %U A376360 208,215,219,224,228,232,237,244,248,253,259,263,268,275,279,284,288 %N A376360 Positions of numbers in A007961 that end in 3. %C A376360 Every positive integer is in exactly one of these sequences: A376357, A376358, A376359, or this sequence. %C A376360 Conjecture: {a(n+1) - a(n) : n >= 1} = {4,5,6,7,8,9,10,11,13}. It has been checked that a(n+1) - a(n) is not 12 for 1<=n<=300000. (See related conjectures at A376357, A376358, and A376359.) %t A376360 a[n_, poly_] := FromDigits[FoldList[{Mod[#[[1]], #2], Quotient[#[[1]], #2]} &, {n, 0}, Reverse[Map[(poly - 2) # (# - 1)/2 + # &, %t A376360 Range[Floor[Sqrt[2 n]]]]]][[All, 2]]] %t A376360 t4 = Map[a[#, 4] &, Range[200]]; (* A007961 *) %t A376360 m = Mod[t4, 10]; %t A376360 Table[Flatten[Position[m, r]], {r, 0, 2}] %t A376360 p0 = Flatten[Position[m, 0]] (* A376357 *) %t A376360 p1 = Flatten[Position[m, 1]] (* A376358 *) %t A376360 p2 = Flatten[Position[m, 2]] (* A376359 *) %t A376360 p3 = Flatten[Position[m, 3]] (* this sequence *) %t A376360 (* _Peter J. C. Moses_, Sep 20 2024 *) %Y A376360 Cf. A007961, A376354, A376357, A376358, A376359. %K A376360 nonn,base %O A376360 1,1 %A A376360 _Clark Kimberling_, Sep 25 2024