cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376361 The number of distinct prime factors of the powerful numbers.

This page as a plain text file.
%I A376361 #13 Mar 25 2025 01:26:05
%S A376361 0,1,1,1,1,1,1,1,2,1,1,2,1,2,2,1,1,1,2,1,2,2,2,2,1,1,2,1,2,1,1,2,2,2,
%T A376361 2,2,2,1,1,2,1,2,2,2,1,2,2,1,2,3,1,2,2,2,1,2,2,2,2,2,2,2,1,2,1,2,2,2,
%U A376361 2,2,1,2,3,3,1,2,2,2,2,1,2,1,1,1,2,2,1,2,2,2,3,2,2,1,2,2,2,2,1,2,2,2,2,2,2
%N A376361 The number of distinct prime factors of the powerful numbers.
%H A376361 Amiram Eldar, <a href="/A376361/b376361.txt">Table of n, a(n) for n = 1..10000</a>
%H A376361 Sourabhashis Das, Wentang Kuo, and Yu-Ru Liu, <a href="https://arxiv.org/abs/2409.10430">Distribution of omega(n) over h-free and h-full numbers</a>, arXiv:2409.10430 [math.NT], 2024. See Theorem 1.2.
%H A376361 <a href="/index/Pow#powerful">Index entries for sequences related to powerful numbers</a>.
%F A376361 a(n) = A001221(A001694(n)).
%F A376361 Sum_{A001694(k) <= x} a(k) = c * sqrt(x) * (log(log(x)) + B - log(2) + L(2, 3) - L(2, 4)) + O(sqrt(x)/log(x)), where c = zeta(3/2)/zeta(3) (A090699), B is Mertens's constant (A077761), L(h, r) = Sum_{p prime} 1/(p^(r/h - 1) * (p - p^(1 - 1/h) + 1)), L(2, 3) = 1.07848461669337535407..., and L(2, 4) = 0.57937575954505652569... (Das et al., 2024).
%t A376361 f[k_] := Module[{e = If[k == 1, {}, FactorInteger[k][[;; , 2]]]}, If[AllTrue[e, # > 1 &], Length[e], Nothing]]; Array[f, 3500]
%o A376361 (PARI) lista(kmax) = {my(e, is); for(k = 1, kmax, e = factor(k)[, 2]; is = 1; for(i = 1, #e, if(e[i] == 1, is = 0; break)); if(is, print1(#e, ", ")));}
%Y A376361 Cf. A001221, A001694, A072047, A077761, A090699, A376362, A376363, A376365.
%K A376361 nonn,easy
%O A376361 1,9
%A A376361 _Amiram Eldar_, Sep 21 2024